
DSB 2022
The reverse complement symmetry advantage

of DNA fragments relationships
for their storage in a directed graph

June, the 13th 2022

Victor EPAIN

2nd year PhD, Inria

under the responsibilities of :

Rumen ANDONOV
PR Univ. Rennes 1

Jean-François GIBRAT
DR INRAe

Dominique LAVENIER
DR CNRS

Outline

I. Introduction
1. DNA fragments
2. DNA fragments relationships

II. Overlaps Graph
1. Bidirected versus directed
2. Efficient directed graph

III. RevSymG
1. Structure
2. Weakly connected component
3. Python3 package

IV. Conclusion & Discussion

2

Ouline

Introduction – DNA fragments

3

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

Raw data

⊳ DNA fragments
— raw reads
— contigs

Axiom

⊳ 2 DNA strands are both sequenced in reverse
reading

⊳ Reads are randomly sampled from either a
strand or its complementary

Introduction – DNA fragments relationships

4

⊳ Oriented fragments
— forward / reverse

⊳ Oriented alignments
— oriented u before / after oriented v

⊳ In an alignment file, each of these 4 overlaps
corresponds to one line
— u is considered in forward orientation

u_id v_id v_or u_before_v?

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

Introduction – DNA fragments relationships

5

Assembly – Compute contigs

⊳ From reads to contigs
— e.g. Overlaps Layout Consensus

paradigm

Assembly – Scaffolding

⊳ Finishing assembly:
ordering & orienting merged reads
— Input: assembly graph

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

6

Overlaps Graph – Bidirected Versus Directed Graphs

Myers EW. Toward simplifying and accurately formulating fragment
assembly. J Comput Biol. 1995;2(2):275–90.

Bidirected graph
[Myers, 1995]

⊳ Fragments are
not doubled according
their two orientations

⊳ Must verify
if oriented neighbors
are predecessors or
successors

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

(In alignments file)

u_id v_id v_or u_before_v?

7

Overlaps Graph – Bidirected Versus Directed Graphs

Myers EW. Toward simplifying and accurately formulating fragment
assembly. J Comput Biol. 1995;2(2):275–90.

Bidirected graph
[Myers, 1995]

⊳ Fragments are
not doubled according
their two orientations

⊳ Must verify
if oriented neighbors
are predecessors or
successors

Directed graph
[our approach]

⊳ Fragments are
doubled according
their two orientations

⊳ Getting oriented
predecessors /
successors
is immediate

(In alignments file)

u_id v_id v_or u_before_v?

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

8

Overlaps Graph – Efficient Directed Graph

How to take advantage of DNA reads overlaps’ reverse complement symmetry to store
them in an oriented graph?

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

9

Construction

⊳ A fragment = two nodes (forward & reverse)

⊳ Tables of predecessors & successors only for the
forwards

⊳ Keep overlaps’ reverse complement symmetry
— edges are not really duplicated in

memory

Advantages

⊳ Classical directed graph structure
— iterating over predecessors / successors

oriented fragments is immediate

⊳ Better view of two strands sequencing

Overlaps Graph – Efficient Directed Graph

Fragments’
indices dimension

Oriented fragments’
index-orientation dimension

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

Storage of all overlap cases between
two fragments

Fragments’ indices
&

Oriented fragments’ index-orientation
dimensions

Fragments’ indices
&

Oriented fragments’ index-orientation
dimensions

Storage of all overlap cases between
two fragments

Fragments’ indices
&

Oriented fragments’ index-orientation
dimensions

Storage of all overlap cases between
two fragments

Fragments’ indices
&

Oriented fragments’ index-orientation
dimensions

Storage of all overlap cases between
two fragments

Fragments’ indices
&

Oriented fragments’ index-orientation
dimensions

Storage of all overlap cases between
two fragments

15

Algorithmic advantage

⊳ Transitive reduction is more efficient
— iterate over successors of successors is less time consuming

⊳ Detect and identify weakly connected component
— is there a connexion between the two strands?
— time consumption divided by two when giving component’s identifier to oriented fragments

Overlaps Graph – RevSymG

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

16

Is there a connexion between the two strands?

RevSymG – Weakly Connected Components

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

17

Is there a connexion between the two strands?

RevSymG – Weakly Connected Components

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

18

Is there a connexion between the two strands?

⊳ Assumption: the two orientations of a fragment belong to two different connected components (c.c.)
— c.c. identifiers are in a list of couples of integers (i, i + 1)
— each forward vertex is associated with a c.c. identifier (couple_index, cc_index_in_couple)

⊳ Explore neighbours
— if neighbour does not have yet a c.c. identifier

○ give the c.c. identifier of its source
○ put the neighbour in a FIFO container

– better to use reads coverage constant than graph depth with a LIFO
— else if its c.c. identifier = to the one of its source: continue
— else: set the second identifier to i in the couple (i, i)

⊳ Explore from a new exploration root
— Add a new couple of c.c. identifiers

○ distant by 1 from the max of the last couple
— repeat exploring neighbours step

RevSymG – Weakly Connected Components

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

19

Implementation

⊳ Python3 package

— tests coverage
○ > 90%

— strict coding conventions
○ modular
○ linters
○ tox environment

— (quasi-)ready to be deployed

RevSymG – Python3 Package

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

20

⊳ Overlaps between fragments are first modelled by a bidirected graph
— Myers’ structure
— no node duplication implies a cost on iteration over oriented predecessors / successors

⊳ Symbolically double the nodes permits to structure overlaps with a directed graph
— fragments’ reverse complement symmetry is benefic to not double edges (and nodes)

⊳ RAM implementation

⊳ More time efficient transitive reduction algorithm & easy inverted repeats identification

⊳ Overlaps graph is a common structure
— reads’ overlaps graph
— assembly graph
— other usages? (blind-double-strands sequencing: RNA? ChIP-seq?)

Conclusion

This talk is funded by the French Bioinformatics Society (SFBI)

Introduction Overlaps Graph
bidirected vs directed

RevSymG
structure & algorithms Conclusion

21

⊳ Who use explicitly overlaps graph?
— how they implement it?

⊳ Fragments’ indices dimension
— how to hash fragments’ identifiers

⊳ Union disjoint sets for weakly connected component

⊳ Transitive reduction details

⊳ RAM based structure
— QUID Disk based structure?

⊳ Why Python?

⊳ Package and code architecture

Discussion – What I did not speak about

Discussion

