DSB 2022

The reverse complement symmmetry advantage
of DNA fragments relationships
for their storage in a directed graph

under the responsibilities of :

) Rumen ANDONOV
Victor EPAIN PR Univ. Rennes 1

2" yvear PhD, Inria i I I i d S b Jean-Francgois GIBRAT
DR INRAe
3 ﬁ& Dominique LAVENIER

June, the 13t 2022 DR CNRS
y 4
&@’Zé,a/— UNIVERSITE DE INRA@
INVENTEURS DU MONDE NUMERIQUE RE N N ES

Ouline

Outline

V.

Introduction
1. DNA fragments
2. DNA fragments relationships

Overlaps Graph
1. Bidirected versus directed
2. Efficient directed graph

RevSymG
1. Structure
2. Weakly connected component
3. Python3 package

Conclusion & Discussion

Introduction Overlaps Graph

RevSymG .
bidirected vs directed structureev& yamlgori‘chms Conclusion
Introduction — DNA fragments
Raw data
> DNA fragments
— rawreads
— contigs
Axiom uf Uy
Row e P
= 2 DNA strands are both sequenced in reverse = > > > strandy
reading us
= Reads are I’andomly Sampled from either 3 fo R (. - . .(strandl

strand or its complementary Uy vf

Overlaps Graph RevSymG

AR L bidirected vs directed structure & algorithms Conclusion
Introduction — DNA fragments relationships
> Oriented fragments > |Inan alignment file, each of these 4 overlaps

— forward /reverse corresponds to one line
— ulis considered in forward orientation

> Oriented alignments u_id v_id v_or u_before_v?

— oriented u before /after oriented v

u u >
() > ()
u u >

Overlaps Graph RevSymG

AR L bidirected vs directed structure & algorithms Conclusion
Introduction — DNA fragments relationships
Assembly - Compute contigs Assembly - Scaffolding
> From reads to contigs > Finishing assembly:
— e.g. Overlaps Layout Consensus ordering & orienting merged reads

paradigm — Input: assembly graph

Overlaps Graph RevSymG

bidirected vs directed structure & algorithms Conclusion

Introduction

Overlaps Graph — Bidirected Versus Directed Graphs

Bidirected graph

> Fragments are
not doubled according
their two orientations

- Must verify O=ONO=0

if oriented neighbors
are predecessors or
successors

@uor :vor,uf%v@

u_id v_id v_or u_before_v?

(In alignments file)

Myers EW. Toward simplifying and accurately formulating fragment
assembly. 3 Comput Biol. 1995;2(2):275-90.

Overlaps Graph RevSymG

bidirected vs directed structure & algorithms Conclusion

Introduction

Overlaps Graph — Bidirected Versus Directed Graphs
@ @ Directed graph
[our approach]

> Fragments are
doubled according
their two orientations

Bidirected graph

> Fragments are
not doubled according
their two orientations

- Must verify < @)

if oriented neighbors
are predecessors or
successors

> Getting oriented
predecessors /
SUCCessors
is immediate

@uor =vor,uf—>v@

u_id v_id v_or u_before_v?

(In alignments file)

Myers EW. Toward simplifying and accurately formulating fragment
assembly. J Comput Biol. 1995;2(2):275-90.

Overlaps Graph RevSymG

bidirected vs directed structure & algorithms Conclusion

Introduction

Overlaps Graph — Efficient Directed Graph

How to take advantage of DNA reads overlaps’ reverse complement symmetry to store
them in an oriented graph?

|

|

o€ Olo € {(uy,v), (v,us)}

|

Overlaps Graph RevSymG

Introduction bidirected vs directed structure & algorithms Conclusion

Overlaps Graph — Efficient Directed Graph
Construction Advantages

= Afragment = two nodes (forward & reverse) > Classical directed graph structure

— iterating over predecessors / successors

> Tables of predecessors & successors only for the oriented fragments is immediate

forwards

, > Better view of two strands sequencing
> Keep overlaps’ reverse complement symmetry

— edges are not really duplicated in
memory

0 1 |Ind|—1} ZInd [997%0¢

indices dimension

Indor

Oriented fragments’
index-orientation dimension

Ind x B

Storage of all overlap cases between
two fragments

Fragments’indices
&

Oriented fragments’ index-orientation

dimensions

0 1 |Znd -1} ZInd

Indor

Ind x B

; OEOIOE{(’U.f,’U),(’U,uf)} — (5) ;
: N‘;f NI—};

Uind Vind Uind Vind

rll Ll
Vo Vo

Uf—) —
Uf<— —
L J L
T T
vy Ur

Storage of all overlap cases between

two fragments

Fragments’indices
&

Oriented fragments’ index-orientation

dimensions

0 1 |Znd -1} ZInd

L

A A

Indor

Ind x B

o€ 0o € {(ug,v),(v,uy)} < (0)

U —

Uf<— —

1o

Ny, Ny, fa =0
Uind Vind Uind Vind rg =1
) Ll
Vo Vo
J L

vf

Storage of all overlap cases between
two fragments

Fragments’indices
&

Oriented fragments’ index-orientation

dimensions

0 1 |Znd -1} ZInd

Indor

Ind x B

; OEOIOE{(’U.f,’U),(’U,uf)} — (5) ;

Ny, Ny, fa=0
Uind Vind Uind Vind ‘ rg =1
I | 1 | 1 | I |
U —
Uf — =
L J L J
Y Y
vy (%3

Storage of all overlap cases between
two fragments

Fragments’indices
&
Oriented fragments’ index-orientation
dimensions

0 1 |Znd -1} ZInd

A A A

Indor

Ind x B

o€ Oloe{(us,v),(v,uf)} < (o)

Ny, Ny, fa=0
Uind Vind Uind Vind rg =1
ri) Ll
Vvl
up — vy <= (vr = uy)
0 1 0 1
ur — | l I ‘ I I ‘
(0,0) (1,0)
Uf — =
L J L J
Y Y
Uf Uy

Storage of all overlap cases between
two fragments

Fragments’indices
&
Oriented fragments’ index-orientation
dimensions

0 1 |Znd -1} ZInd

A A A

Indor

Ind x B

o€ Oloe{(us,v),(v,uf)} < (o)
! = NIZ

Uind Vind Uind Vind

rirl Lol
Vo Vo

1o

Uf<— —

J

L

vf

Overlaps Graph RevSymG

bidirected vs directed structure & algorithms Conclusion

Introduction

Overlaps Graph — RevSymG

Algorithmic advantage

> Transitive reduction is more efficient
— iterate over successors of successors is less time consuming

> Detect and identify weakly connected component
— isthere a connexion between the two strands?
— time consumption divided by two when giving component’s identifier to oriented fragments

15

Introduction

Overlaps Graph

bidirected vs directed

RevSymG

structure & algorithms

Conclusion

RevSymG — Weakly Connected Components

Is there a connexion between the two strands?

i

P
o

-
—

0 0 0
W=~
OO0

11 1

Split strands
overlaps graph

16

Overlaps Graph RevSymG

bidirected vs directed structure & algorithms Conclusion

Introduction

RevSymG — Weakly Connected Components

Is there a connexion between the two strands?

=

(0 0 1 0 0 0 0 0

Q @&@ @) ’@ e @ @ CL . gw;\ j: N : [Merged strands
~ overlaps graph
D@D —@<® @ @@
0 0 0 0 0 _J

(e}

—

1 0

0

020 =00

=
(ew]

0

Y
—_

1

—
—_
[y
o

0 0 (

OO 0>-000

@@~

(-
—
P

O
O

® ®
@ O -
©1©
-@ ©
& ©

Overlaps Graph RevSymG Conclusion

Introduction bidirected vs directed structure & algorithms

RevSymG — Weakly Connected Components

Is there a connexion between the two strands?

> Assumption: the two orientations of a fragment belong to two different connected components (c.c.)

— c.c.identifiers are in a list of couples of integers (i, 1 + 1)
— each forward vertex is associated with a c.c. identifier (couple_index, cc_index_in_couple)

> Explore neighbours
— if neighbour does not have yet a c.c. identifier
o give the c.c. identifier of its source
o put the neighbour in a FIFO container
— better to use reads coverage constant than graph depth with a LIFO
— elseifits c.c. identifier = to the one of its source: continue
— else: set the second identifier to i in the couple (i, i)

> Explore from a new exploration root
— Add a new couple of c.c. identifiers
o distant by 1from the max of the last couple
— repeat exploring neighbours step

18

. Overlaps Graph RevSymG .
Introduction bidirected vs directed structure & algorithms Conelusion
RevSymG - Python3 Package
| | tati revsymg 0.2.0 0
mplementation documentation References
Q Search -
elease
> Python3 package 520
Install
— tests coverage — Date
Jun 09, 2022
0 > 9 O % Graphs
. . . Identifiers Containers
— strict coding conventions Attes Cartaner - :
o Reverse Symmetric Graph
o m od u |a r Algorithms o Sub-Graphs
Libraries o Split Strands Graph
@) | | N te rs Exceptions o Identifiers Containers
. Utiftary o Indices Identifiers Container
@) tox environme nt o Hashable Identifiers Container
. Changslog o |dentifiers Container Abstract Base Class
I (q uasl _) rea dy tO be d e p | Oyed Contributing o Attributes Container
o Algorithms
o Connected Component Algorithms
o Graph Functions
o Transitive Reduction
o Libraries
o Index Library
o Strings Library
« Exceptions
o Utilitary
Previous Next
Install Graphs

19

Overlaps Graph RevSymG

Introduction bidirected vs directed structure & algorithms

Conclusion

Conclusion

> Qverlaps between fragments are first modelled by a bidirected graph
— Myers' structure

— no node duplication implies a cost on iteration over oriented predecessors / successors

> Symbolically double the nodes permits to structure overlaps with a directed graph
— fragments’' reverse complement symmmetry is benefic to not double edges (and nodes)

> RAM implementation
= More time efficient transitive reduction algorithm & easy inverted repeats identification

> Overlaps graph isa common structure
— reads' overlaps graph
— assembly graph
— other usages? (blind-double-strands sequencing: RNA? ChlP-seq?)

% - @) o
ol 12

' I I 1 dsh O™ T
ﬁ soclete frrangaise ae [lque

)I0INT

This talk is funded by the French Bioinformatics Society (SFBI) 20

Discussion

Discussion — What | did not speak about

> Who use explicitly overlaps graph?
— how they implement it?

> Fragments’ indices dimension
— how to hash fragments’ identifiers

= Union disjoint sets for weakly connected component
> Transitive reduction details

> RAM based structure
— QUID Disk based structure?

= Why Python?

> Package and code architecture

21

