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Raw data

⊳ DNA fragments
— raw reads
— contigs

Axiom

⊳ 2 DNA strands are both sequenced in reverse 
reading

⊳ Reads are randomly sampled from either a 
strand or its complementary



Introduction – DNA fragments relationships
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⊳ Oriented fragments
— forward / reverse

⊳ Oriented alignments
— oriented u before / after oriented v

⊳ In an alignment file, each of these 4 overlaps 
corresponds to one line
— u is considered in forward orientation

u_id  v_id  v_or  u_before_v?
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Assembly – Compute contigs

⊳ From reads to contigs
— e.g. Overlaps Layout Consensus 

paradigm

Assembly – Scaffolding

⊳ Finishing assembly: 
ordering & orienting merged reads
— Input: assembly graph
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Overlaps Graph – Bidirected Versus Directed Graphs

Myers EW. Toward simplifying and accurately formulating fragment 
assembly. J Comput Biol. 1995;2(2):275–90.

Bidirected graph 
[Myers, 1995]

⊳ Fragments are 
not doubled according 
their two orientations

⊳ Must verify 
if oriented neighbors 
are predecessors or 
successors
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(In alignments file)

u_id  v_id  v_or  u_before_v?
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Overlaps Graph – Bidirected Versus Directed Graphs

Myers EW. Toward simplifying and accurately formulating fragment 
assembly. J Comput Biol. 1995;2(2):275–90.

Bidirected graph 
[Myers, 1995]

⊳ Fragments are 
not doubled according 
their two orientations

⊳ Must verify 
if oriented neighbors 
are predecessors or 
successors

Directed graph
[our approach]

⊳ Fragments are 
doubled according 
their two orientations

⊳ Getting oriented 
predecessors / 
successors 
is immediate

(In alignments file)

u_id  v_id  v_or  u_before_v?
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Overlaps Graph – Efficient Directed Graph

How to take advantage of DNA reads overlaps’ reverse complement symmetry to store 
them in an oriented graph?
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Construction

⊳ A fragment = two nodes (forward & reverse) 

⊳ Tables of predecessors & successors only for the 
forwards

⊳ Keep overlaps’ reverse complement symmetry
— edges are not really duplicated in 

memory

Advantages

⊳ Classical directed graph structure
— iterating over predecessors / successors 

oriented fragments is immediate

⊳ Better view of two strands sequencing

Overlaps Graph – Efficient Directed Graph

Fragments’ 
indices dimension

Oriented fragments’ 
index-orientation dimension
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Algorithmic advantage

⊳ Transitive reduction is more efficient
— iterate over successors of successors is less time consuming 

⊳ Detect and identify weakly connected component
— is there a connexion between the two strands?
— time consumption divided by two when giving component’s identifier to oriented fragments

Overlaps Graph – RevSymG
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Is there a connexion between the two strands?

RevSymG – Weakly Connected Components
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Is there a connexion between the two strands?

RevSymG – Weakly Connected Components
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Is there a connexion between the two strands?

⊳ Assumption: the two orientations of a fragment belong to two different connected components (c.c.)
— c.c. identifiers are in a list of couples of integers (i, i + 1)
— each forward vertex is associated with a c.c. identifier (couple_index, cc_index_in_couple) 

⊳ Explore neighbours
— if neighbour does not have yet a c.c. identifier

○ give the c.c. identifier of its source
○ put the neighbour in a FIFO container

– better to use reads coverage constant than graph depth with a LIFO
— else if its c.c. identifier = to the one of its source: continue
— else: set the second identifier to i in the couple (i, i)

⊳ Explore from a new exploration root
— Add a new couple of c.c. identifiers 

○ distant by 1 from the max of the last couple
— repeat exploring neighbours step

RevSymG – Weakly Connected Components
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Implementation
 
⊳ Python3 package

— tests coverage
○ > 90%

— strict coding conventions
○ modular
○ linters
○ tox environment

— (quasi-)ready to be deployed

RevSymG – Python3 Package
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⊳ Overlaps between fragments are first modelled by a bidirected graph
— Myers’ structure
— no node duplication implies a cost on iteration over oriented predecessors / successors

⊳ Symbolically double the nodes permits to structure overlaps with a directed graph
— fragments’ reverse complement symmetry is benefic to not double edges (and nodes)

⊳ RAM implementation

⊳ More time efficient transitive reduction algorithm & easy inverted repeats identification

⊳ Overlaps graph is a common structure 
— reads’ overlaps graph 
— assembly graph
— other usages? (blind-double-strands sequencing: RNA? ChIP-seq?)

Conclusion

This talk is funded by the French Bioinformatics Society (SFBI)
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⊳ Who use explicitly overlaps graph?
— how they implement it?

⊳ Fragments’ indices dimension
— how to hash fragments’ identifiers

⊳ Union disjoint sets for weakly connected component

⊳ Transitive reduction details

⊳ RAM based structure
— QUID Disk based structure?

⊳ Why Python?

⊳ Package and code architecture

Discussion – What I did not speak about

Discussion


