DSB 2022

The reverse complement symmetry advantage of DNA fragments relationships for their storage in a directed graph

Victor EPAIN 2nd year PhD, Inria

June, the 13th 2022

under the responsibilities of :

Rumen ANDONOV PR Univ. Rennes 1

Jean-François GIBRAT DR INRAe

Dominique LAVENIER DR CNRS

Outline

I. Introduction

- 1. DNA fragments
- 2. DNA fragments relationships

II. Overlaps Graph

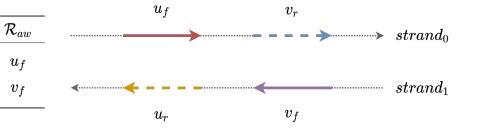
- 1. Bidirected versus directed
- 2. Efficient directed graph

III. RevSymG

- 1. Structure
- 2. Weakly connected component
- 3. Python3 package

IV. Conclusion & Discussion

Conclusion


Introduction – DNA fragments

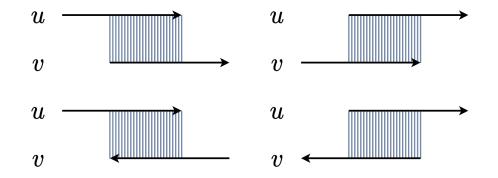
Raw data

- DNA fragments
 - raw reads
 - contigs

Axiom

- 2 DNA strands are both sequenced in reverse reading
- Reads are randomly sampled from either a strand or its complementary

Introduction


RevSymG structure & algorithms

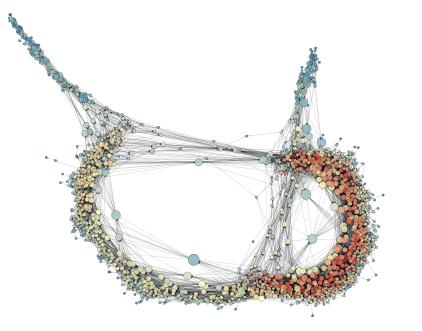
Conclusion

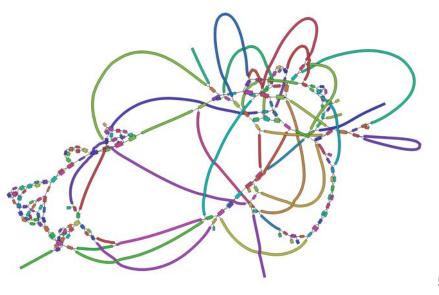
Introduction – DNA fragments relationships

- Oriented fragments
 - forward / reverse
- Oriented alignments
 - oriented u before / after oriented v

- In an alignment file, each of these 4 overlaps corresponds to one line
 - u is considered in forward orientation
 - u_id v_id v_or u_before_v?

Conclusion


Introduction – DNA fragments relationships


Assembly – Compute contigs

- From reads to contigs
 - e.g. Overlaps Layout Consensus paradigm

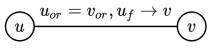
Assembly – Scaffolding

Finishing assembly:
 ordering & orienting merged reads
 — Input: assembly graph

Conclusion

Overlaps Graph – Bidirected Versus Directed Graphs

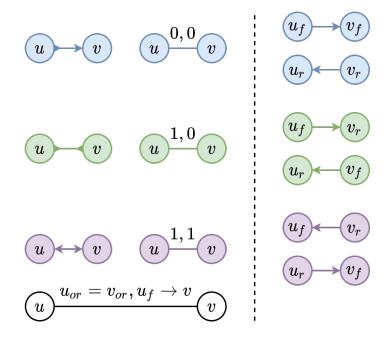
Bidirected graph


[Myers, 1995]

- Fragments are not doubled according their two orientations
- Must verify if oriented neighbors are predecessors or successors

(In alignments file)

u_id v_id v_or u_before_v?


Myers EW. Toward simplifying and accurately formulating fragment assembly. J Comput Biol. 1995;2(2):275–90.

Conclusion

Overlaps Graph – Bidirected Versus Directed Graphs

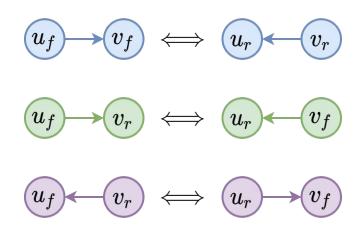
Bidirected graph [Myers, 1995]

- Fragments are not doubled according their two orientations
- Must verify if oriented neighbors are predecessors or successors

Directed graph [our approach]

- Fragments are doubled according their two orientations
- Getting oriented predecessors / successors is immediate

(In alignments file)


u_id v_id v_or u_before_v?

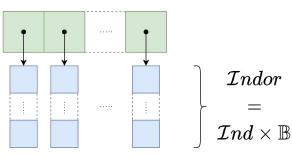
Myers EW. Toward simplifying and accurately formulating fragment assembly. J Comput Biol. 1995;2(2):275–90.

Conclusion

Overlaps Graph – Efficient Directed Graph

How to take advantage of DNA reads overlaps' reverse complement symmetry to store them in an oriented graph?

 $o \in \mathcal{O} \, | \, o \in \{(u_f, v), (v, u_f)\} \iff ar{o}$

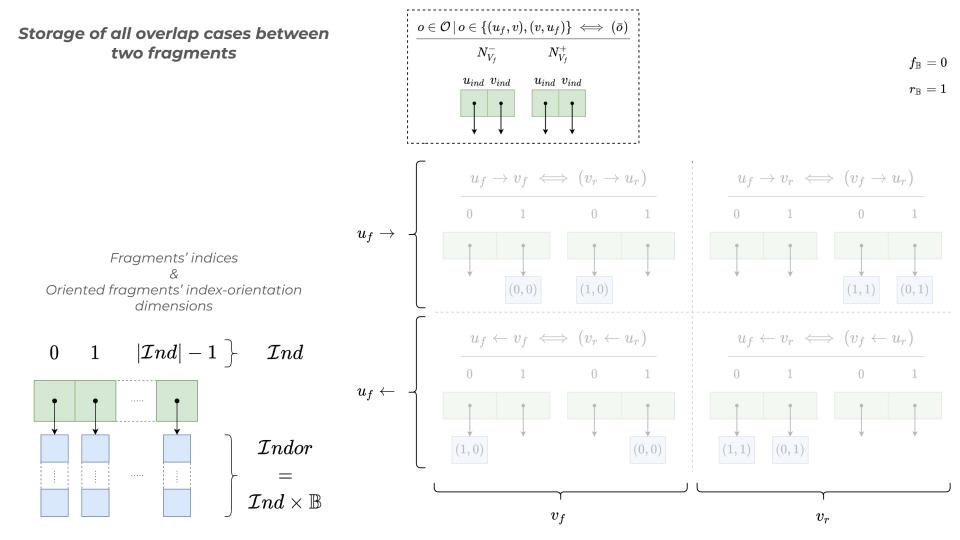

Conclusion

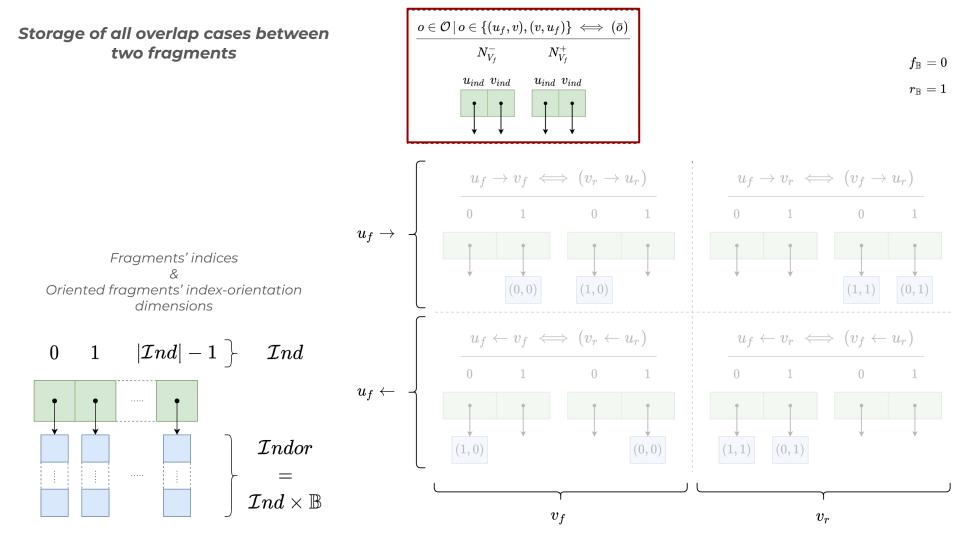
Overlaps Graph – Efficient Directed Graph

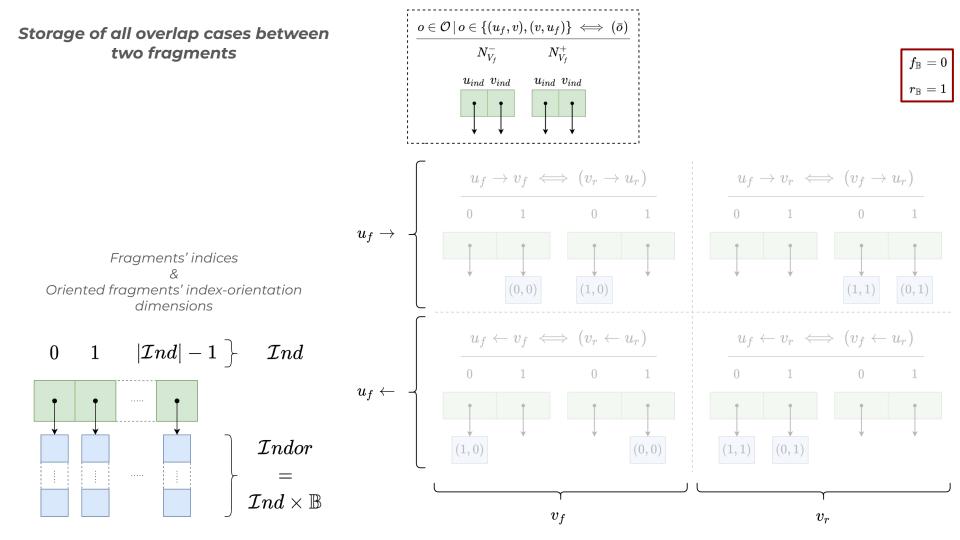
Construction

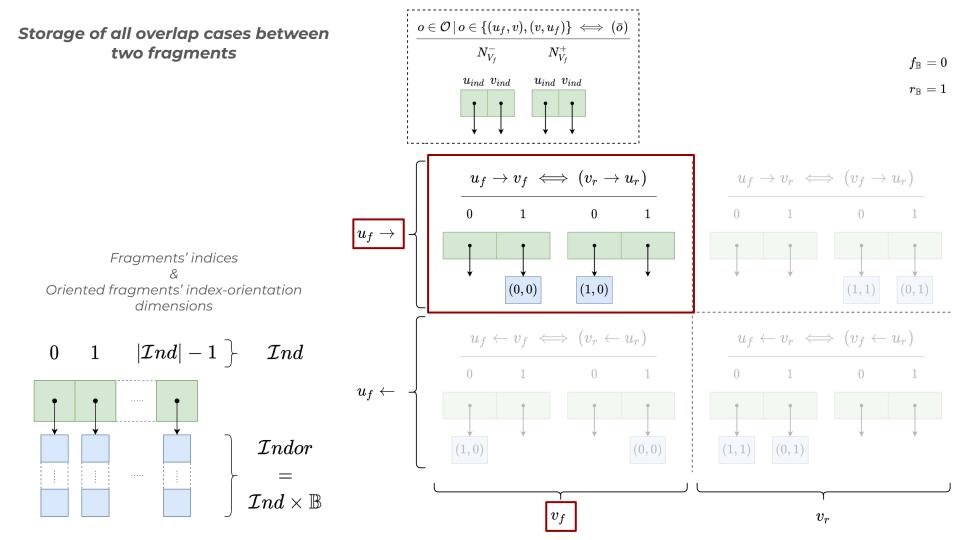
- A fragment = two nodes (forward & reverse)
- Tables of predecessors & successors only for the forwards
- Keep overlaps' reverse complement symmetry
 - edges are not really duplicated in memory

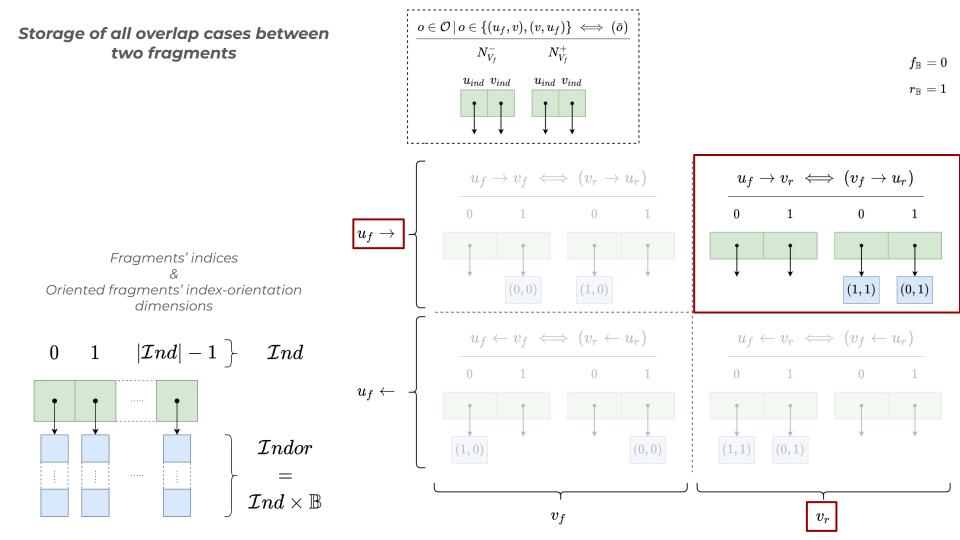
 Fragments' indices dimension



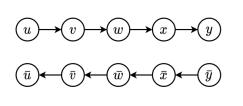


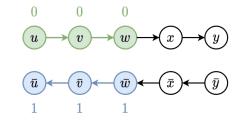

Advantages

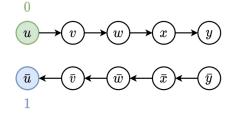

 \triangleright

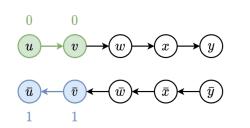

- Classical directed graph structure — iterating over predecessors / successors oriented fragments is immediate
- Better view of two strands sequencing

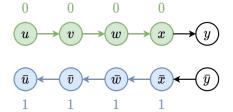
Overlaps Graph – RevSymG

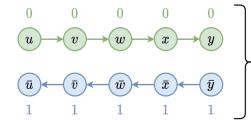

Algorithmic advantage

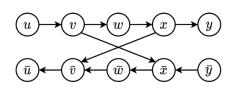

- Transitive reduction is more efficient
 - iterate over successors of successors is less time consuming
- Detect and identify weakly connected component
 - is there a connexion between the two strands?
 - time consumption divided by two when giving component's identifier to oriented fragments

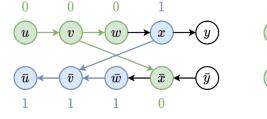

Conclusion

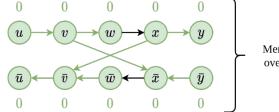

RevSymG – Weakly Connected Components


Is there a connexion between the two strands?

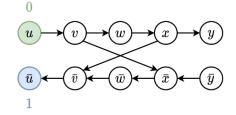


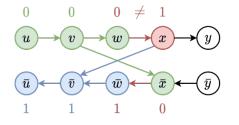


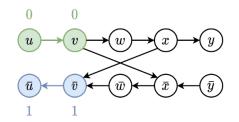

Split strands overlaps graph

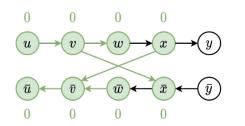

Conclusion

RevSymG – Weakly Connected Components


Is there a connexion between the two strands?







Merged strands overlaps graph

RevSymG – Weakly Connected Components

Is there a connexion between the two strands?

- Assumption: the two orientations of a fragment belong to two different connected components (c.c.)
 - c.c. identifiers are in a list of couples of integers (i, i + 1)
 - each forward vertex is associated with a c.c. identifier (couple_index, cc_index_in_couple)
- Explore neighbours
 - if neighbour does not have yet a c.c. identifier
 - o give the c.c. identifier of its source
 - put the neighbour in a FIFO container
 - better to use reads coverage constant than graph depth with a LIFO
 - else if its c.c. identifier = to the one of its source: continue
 - else: set the second identifier to i in the couple (i, i)
- Explore from a new exploration root
 - Add a **new couple** of c.c. identifiers
 - distant by 1 from the max of the last couple
 - repeat exploring neighbours step

RevSymG – Python3 Package

Implementation

- Python3 package
 - tests coverage
 - o >90%
 - strict coding conventions
 - modular
 - linters
 - tox environment
 - (quasi-)ready to be deployed

revsymg 0.2.0 documentation	References	÷ģ:
Q Search	Release	
Install References Graphs	O.2.0 Date Jun 09, 2022	
Identifiers Containers Attributes Container Algorithms Libraries Exceptions Utilitary Changelog Contributing	 Graphs Reverse Symmetric Graph Sub-Graphs Split Strands Graph Identifiers Containers Indices Identifiers Container Hashable Identifiers Container Identifiers Container Identifiers Container Identifiers Container Algorithms Connected Component Algorithms Graph Functions Transitive Reduction Libraries Index Library Strings Library Exceptions Utilitary 	
	Previous Next Constall Graphs	

Conclusion

- Overlaps between fragments are first modelled by a bidirected graph
 - Myers' structure
 - no node duplication implies a cost on iteration over oriented predecessors / successors
- Symbolically double the nodes permits to structure overlaps with a directed graph
 - fragments' reverse complement symmetry is benefic to not double edges (and nodes)
- RAM implementation
- More time efficient transitive reduction algorithm & easy inverted repeats identification
- Overlaps graph is a common structure
 - reads' overlaps graph
 - assembly graph
 - other usages? (blind-double-strands sequencing: RNA? ChIP-seq?)

This talk is funded by the French Bioinformatics Society (SFBI)

Discussion – What I did not speak about

- Who use explicitly overlaps graph?
 - how they implement it?
- Fragments' indices dimension
 - how to hash fragments' identifiers
- Union disjoint sets for weakly connected component
- Transitive reduction details
- RAM based structure
 - *QUID* **Disk** based structure?
- Why Python?
- Package and code architecture