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Introduction — DNA fragments
Raw data
> DNA fragments
— rawreads
— contigs
Axiom uf Uy
Row e P
= 2 DNA strands are both sequenced in reverse = > > > strandy
reading us
= Reads are I’andomly Sampled from either 3 fo R (. - . .( strandl

strand or its complementary Uy vf
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AR L bidirected vs directed structure & algorithms Conclusion
Introduction — DNA fragments relationships
>  Oriented fragments > |Inan alignment file, each of these 4 overlaps

—  forward /reverse corresponds to one line
— ulis considered in forward orientation

> Oriented alignments u_id v_id v_or u_before_v?

— oriented u before /after oriented v

u u >
() > ()
u u >
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Introduction — DNA fragments relationships
Assembly - Compute contigs Assembly - Scaffolding
> From reads to contigs >  Finishing assembly:
— e.g. Overlaps Layout Consensus ordering & orienting merged reads

paradigm — Input: assembly graph
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Overlaps Graph — Bidirected Versus Directed Graphs

Bidirected graph

>  Fragments are
not doubled according
their two orientations

- Must verify O=ONO=0

if oriented neighbors
are predecessors or
successors

@uor :vor,uf%v@

u_id v_id v_or u_before_v?

(In alignments file)

Myers EW. Toward simplifying and accurately formulating fragment
assembly. 3 Comput Biol. 1995;2(2):275-90.
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Overlaps Graph — Bidirected Versus Directed Graphs
@ @ Directed graph
[our approach]

>  Fragments are
doubled according
their two orientations

Bidirected graph

>  Fragments are
not doubled according
their two orientations

- Must verify < @)

if oriented neighbors
are predecessors or
successors

>  Getting oriented
predecessors /
SUCCessors
is immediate

@uor =vor,uf—>v@

u_id v_id v_or u_before_v?

(In alignments file)

Myers EW. Toward simplifying and accurately formulating fragment
assembly. J Comput Biol. 1995;2(2):275-90.
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Overlaps Graph — Efficient Directed Graph

How to take advantage of DNA reads overlaps’ reverse complement symmetry to store
them in an oriented graph?

|

|

o€ Olo € {(uy,v), (v,us)}
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Overlaps Graph — Efficient Directed Graph
Construction Advantages

= Afragment = two nodes (forward & reverse) >  Classical directed graph structure

— iterating over predecessors / successors

> Tables of predecessors & successors only for the oriented fragments is immediate

forwards

, >  Better view of two strands sequencing
>  Keep overlaps’ reverse complement symmetry

— edges are not really duplicated in
memory
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indices dimension

Indor
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index-orientation dimension

Ind x B




Storage of all overlap cases between
two fragments

Fragments’indices
&

Oriented fragments’ index-orientation

dimensions
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Fragments’indices
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Storage of all overlap cases between
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Storage of all overlap cases between
two fragments

Fragments’indices
&
Oriented fragments’ index-orientation
dimensions
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Storage of all overlap cases between
two fragments

Fragments’indices
&
Oriented fragments’ index-orientation
dimensions
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Overlaps Graph — RevSymG

Algorithmic advantage

>  Transitive reduction is more efficient
— iterate over successors of successors is less time consuming

>  Detect and identify weakly connected component
— isthere a connexion between the two strands?
— time consumption divided by two when giving component’s identifier to oriented fragments

15
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Conclusion

RevSymG — Weakly Connected Components

Is there a connexion between the two strands?
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16



Overlaps Graph RevSymG

bidirected vs directed structure & algorithms Conclusion

Introduction

RevSymG — Weakly Connected Components

Is there a connexion between the two strands?

=

( 0 0 1 0 0 0 0 0

Q @&@ @ ) ’@ e @ @ CL . gw;\ j: N : [ Merged strands
~ overlaps graph
D@D —@<® @ @@
0 0 0 0 0 _J

(e}

—

1 0

0

020 =00

=
(ew]

0

Y
—_

1

—
—_
[y
o

0 0 (

OO 0>-000

@@~

(-
—
P

O
O

® ®
@ O -
©1©
-@ ©
& ©



Overlaps Graph RevSymG Conclusion

Introduction bidirected vs directed structure & algorithms

RevSymG — Weakly Connected Components

Is there a connexion between the two strands?

>  Assumption: the two orientations of a fragment belong to two different connected components (c.c.)

— c.c.identifiers are in a list of couples of integers (i, 1 + 1)
— each forward vertex is associated with a c.c. identifier (couple_index, cc_index_in_couple)

>  Explore neighbours
— if neighbour does not have yet a c.c. identifier
o give the c.c. identifier of its source
o put the neighbour in a FIFO container
— better to use reads coverage constant than graph depth with a LIFO
— elseifits c.c. identifier = to the one of its source: continue
— else: set the second identifier to i in the couple (i, i)

>  Explore from a new exploration root
— Add a new couple of c.c. identifiers
o distant by 1from the max of the last couple
—  repeat exploring neighbours step
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RevSymG - Python3 Package
| | tati revsymg 0.2.0 0
mplementation documentation References
Q  Search -
elease
>  Python3 package 520
Install
—  tests coverage — Date
Jun 09, 2022
0 > 9 O % Graphs
. . . Identifiers Containers
—  strict coding conventions Attes Cartaner - :
o Reverse Symmetric Graph
o m od u |a r Algorithms o Sub-Graphs
Libraries o Split Strands Graph
@) | | N te rs Exceptions o Identifiers Containers
. Utiftary o Indices Identifiers Container
@) tox environme nt o Hashable Identifiers Container
. Changslog o |dentifiers Container Abstract Base Class
I (q uasl _) rea dy tO be d e p | Oyed Contributing o Attributes Container
o Algorithms
o Connected Component Algorithms
o Graph Functions
o Transitive Reduction
o Libraries
o Index Library
o Strings Library
« Exceptions
o Utilitary
Previous Next
Install Graphs
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Conclusion

>  Qverlaps between fragments are first modelled by a bidirected graph
—  Myers' structure

— no node duplication implies a cost on iteration over oriented predecessors / successors

>  Symbolically double the nodes permits to structure overlaps with a directed graph
— fragments’' reverse complement symmmetry is benefic to not double edges (and nodes)

> RAM implementation
=  More time efficient transitive reduction algorithm & easy inverted repeats identification

>  Overlaps graph isa common structure
— reads' overlaps graph
— assembly graph
— other usages? (blind-double-strands sequencing: RNA? ChlP-seq?)
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Discussion

Discussion — What | did not speak about

>  Who use explicitly overlaps graph?
—  how they implement it?

>  Fragments’ indices dimension
— how to hash fragments’ identifiers

= Union disjoint sets for weakly connected component
>  Transitive reduction details

> RAM based structure
— QUID Disk based structure?

=  Why Python?

> Package and code architecture
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