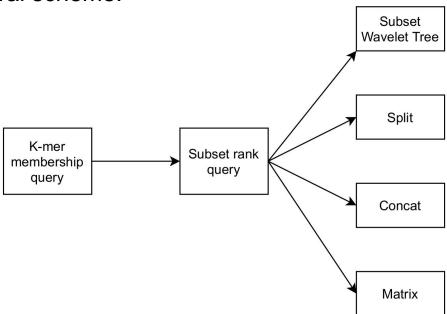
Succinct k-mer Sets Using Subset Rank Queries on the Spectral BWT

Jarno Alanko, Simon Puglisi, Jaakko Vuohtoniemi

DSB 2022



Exact k-mer membership queries

- The BOSS data structure of Bowe et al. (WABI 2012)
 - Very compact
 - Complicated and slow
 - Used in: VARI, VG, Themisto
- Hashing
 - Not as small as BOSS
 - Fast
 - Used in: Bifrost, Pufferfish, Blight, FDBG, SSHash

This work

 The BOSS data structure can be seen as a particular implementation of a more general scheme.

\$\$\$

CAA

ACA

GCA

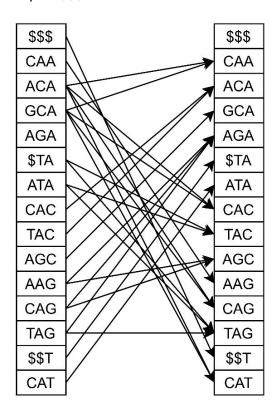
AGA

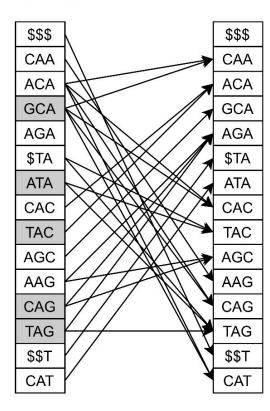
\$TA ATA

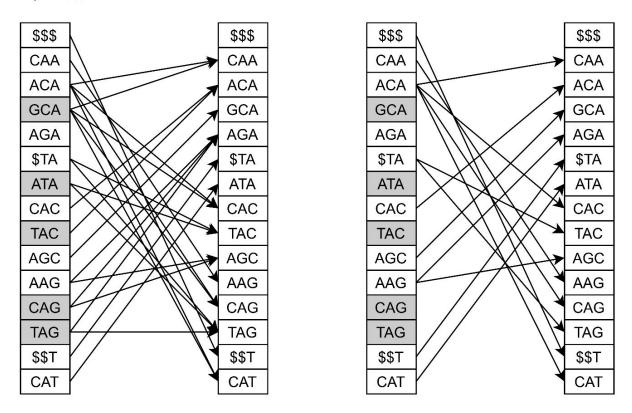
CAC

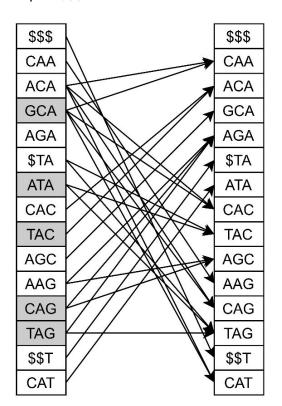
TAC

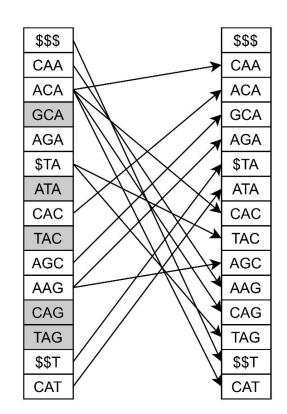
AGC


AAG CAG


TAG


\$\$T


CAT


\$\$\$		\$\$\$
CAA		CAA
ACA		ACA
GCA		GCA
AGA		AGA
\$TA		\$TA
ATA		ATA
CAC		CAC
TAC		TAC
AGC		AGC
AAG		AAG
CAG		CAG
TAG		TAG
\$\$T		\$\$T
CAT		CAT
	CAA ACA GCA AGA \$TA ATA CAC TAC AGC AAG CAG TAG \$\$T	CAA ACA GCA AGA \$TA ATA CAC TAC AGC AAG CAG TAG \$\$T

SBWT

Т
G
ACGT
Ø
Ø
CG
Ø
Α
Ø
Α
AC
Ø
Ø
Α
Α

Algorithm 1 SBWT k-mer search query.

 $r \leftarrow 1 + C[c] + subsetrank_c(r)$

Input: k-mer S.

if $\ell > r$ then

return ℓ .

return 0

Output: The colexicographic rank of k-mer S in the underlying spectrum of the SBWT, or 0 if S is not in the spectrum.

```
function Search(S):  [\ell, r] \leftarrow [1, n]  for i = 1, ..., k do  c \leftarrow S[i]   \ell \leftarrow 1 + C[c] + subsetrank_c(\ell - 1) + 1
```

 $\label{eq:total_continuity} \{T\},\ \{G\},\ \{ACGT\},\ \varnothing,\ \varnothing,\ \{CG\},\ \varnothing,\ \{A\},\ \{A\},\ \{AC\},\ \varnothing,\ \varnothing,\ \{A\},\ \{A\},\$

SubsetRank_A(9) = ?

{T}, **{G}**, **{ACGT}**, ∅, ∅, **{CG}**, ∅, **{A}**, ∅, **{A}**, ⟨AC}, ∅, ∅, **{A}**, **{A**}

SubsetRank_A($\frac{9}{}$) = ?

 $\{T\}, \{G\}, \{\underline{A}CGT\}, \varnothing, \varnothing, \{CG\}, \varnothing, \{\underline{A}\}, \varnothing, \{A\}, \{AC\}, \varnothing, \varnothing, \{A\}, \{A\}\}$

SubsetRank_A($\frac{9}{}$) = ?

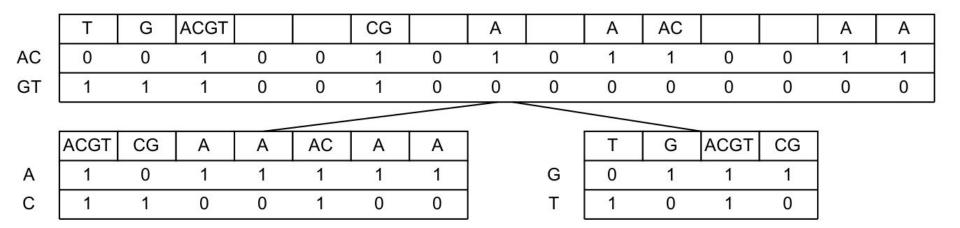
 $\{T\}, \{G\}, \{\underline{A}CGT\}, \varnothing, \varnothing, \{CG\}, \varnothing, \{\underline{A}\}, \varnothing, \{A\}, \{AC\}, \varnothing, \varnothing, \{A\}, \{A\}\}$

SubsetRank_A(9) = 2

$$\{T\}$$
, $\{G\}$, $\{\underline{A}CGT\}$, \varnothing , \varnothing , $\{CG\}$, \varnothing , $\{\underline{A}\}$, \varnothing , $\{A\}$, $\{AC\}$, \varnothing , \emptyset , $\{A\}$, $\{A\}$

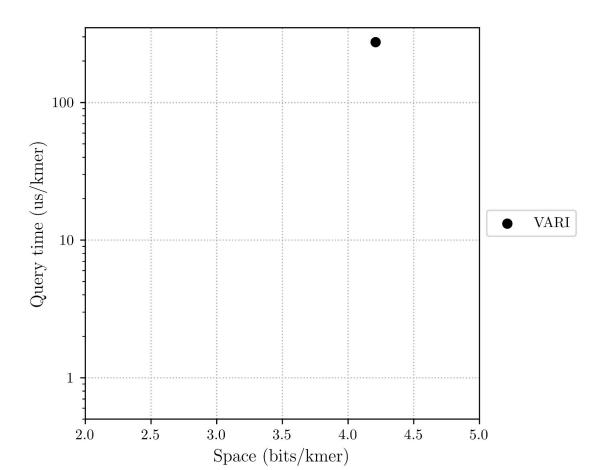
SubsetRank_A(
$$9$$
) = 2

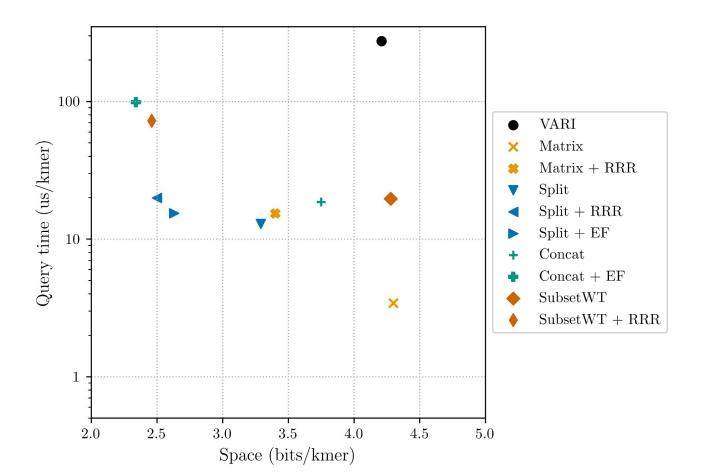
Lemma 1. The SBWT supports k-mer membership queries in O(kt) time, where t is the time for a subset rank query.

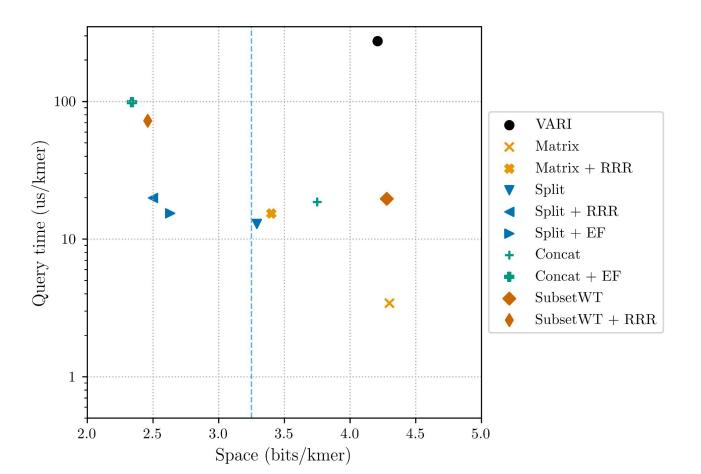

	\$\$\$	CAA	ACA	GCA	AGA	\$TA	ATA	CAC	TAC	AGC	AAG	CAG	TAG	\$\$T	CAT
Α	0	0	1	0	0	0	0	1	0	1	1	0	0	1	1
С	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0
G	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
Т	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

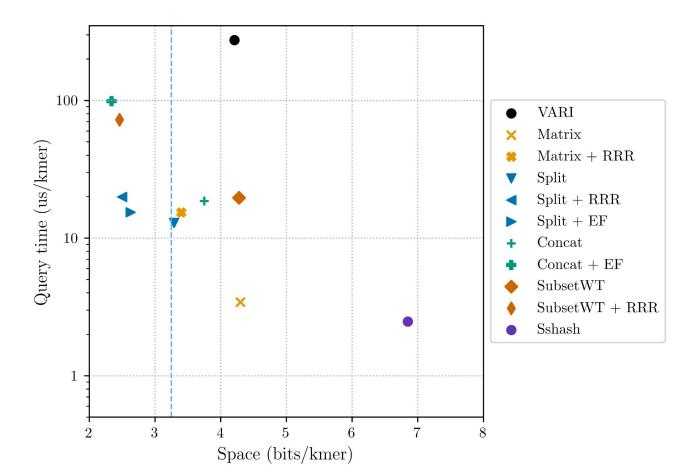
	\$\$\$	CAA	ACA	GCA	AGA	\$TA	ATA	CAC	TAC	AGC	AAG	CAG	TAG	\$\$T	CAT
Α	0	0	1	0	0	0	0	1	0	1	1	0	0	1	1
С	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0
G	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
Т	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

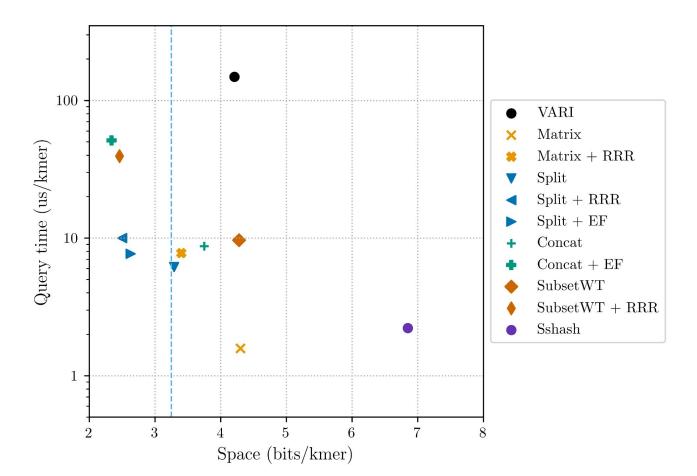
Analysis

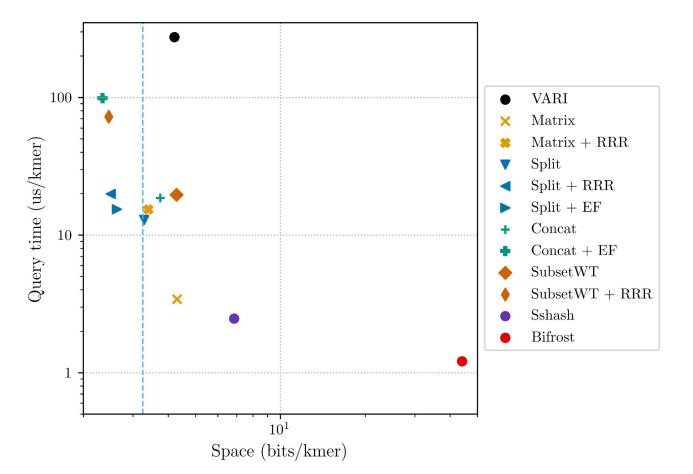

- The $\sigma \times n$ matrix has n-1 one-bits, so $Pr(1) = \frac{n-1}{\sigma n} \leq \frac{1}{\sigma}$
- We get $H_0(\text{Matrix}) \le n(\log \sigma + 1/\ln 2) = O(n \log \sigma)$
- For $\sigma = 4$ we have $\left(-\frac{1}{4}\log(\frac{1}{4}) \frac{3}{4}\log(\frac{3}{4})\right) \cdot 4 \approx 3.245$

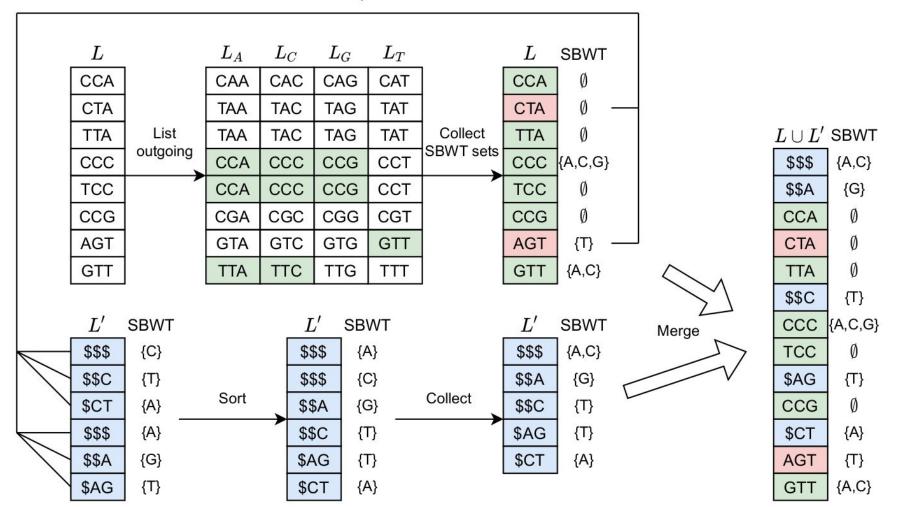

Subset wavelet tree




Experiments


- Competitors
 - SBWT
 - VARI
 - SSHash
 - Bifrost
- Data
 - Viral pangenome (SARS-CoV-2)
 - Bacterial pangenome (E. coli)
 - Metagenome reads.
- k = 31





Conclusion

- BWT-based methods are competitive again
- Things omitted from this talk:
 - Construction
 - Streaming queries
 - Entropy optimization

Thank you for your attention

Prefixes required

Split representation

\$\$\$	CAA	ACA	GCA	AGA	\$TA	ATA	CAC	TAC	AGC	AAG	CAG	TAG	\$\$T	CAT
0	0	1	0	0	0	0	1	0	1	1	0	0	1	1
0	0	1	0	0	1	0	0	0	0	0	1	0	0	0
0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	1	0	0	0	1	0	0

M⁻

W

ACA	AGA	TAC	TAG
1	0	0	0
1	0	0	0
1	0	0	0
0	0	0	0

	\$\$\$	CAA	GCA	\$TA	ATA	CAC	AGC	AAG	CAG	\$\$T	CAT
93	0	0	0	0	0	1	1	1	0	1	1
į.	0	0	0	1	0	0	0	0	1	0	0
	0	1	0	0	1	0	0	0	0	0	0
	1	0	1	0	0	0	0	0	0	0	0
	Т	G	Т	С	G	Α	Α	Α	С	Α	Α

Concatenated representation

	\$\$\$	CAA	ACA	GCA	AGA	\$TA	ATA	CAC	TAC	AGC	AAG	CAG	TAG	\$\$T	CAT
Α	0	0	1	0	0	0	0	1	0	1	1	0	0	1	1
С	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0
G	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
T	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

Т	С	Α	С	G	Т	\$	\$	С	G	\$	Α	\$	Α	Α	С	\$	\$	Α	Α
1	1	1	0	0	0	1	1	1	0	1	1	1	1	1	0	1	1	1	1