
A combinatorial approach for reconstructing rDNA repeats

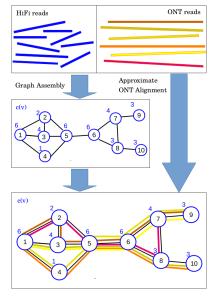
Frederik Oehl

Heinrich-Heine-Universität Düsseldorf

Introduction

Content

- Combinatorial method for resolving the individual rDNA repeat copies from any given human sample
- Assembly of the rDNA repeat copies from six samples → CHM13, HPRC (Human Pangenome Reference Consortium)
- CHM13: Comparison with T2T assembly \rightarrow Appendix



Related Work

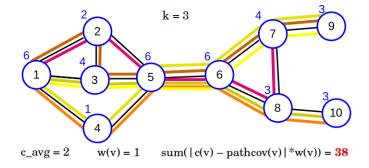
- Telomere-to-telomere (T2T) Consortium [1] → CHM13 reference genome, rDNA assembly
- Methods for graph-based assembly and sequence-to-graph-alignment
 → MBG [2] and GraphAligner [3]
- Viral quasispecies assembly by Baaijens et al. [4] → We use a similar optimization approach

Model: Preprocessing

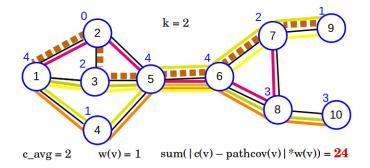
Model

OPTIMAL REPEAT SELECTION

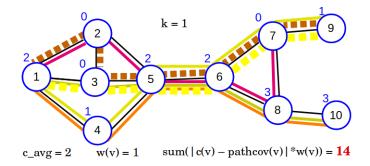
Input:	An undirected graph $G = (V, E)$.						
	A multiset of reads $R_{Aln} = \{ra_1, ra_2,, ra_n\}$, where each read						
	is a path in G.						
	A value $c(v) \in \mathbb{R}$ for each $v \in V$.						
	A constant $c_{avg} \in \mathbb{R}$.						
	A weight $w(v) \in \mathbb{R}$ for each v .						
	A fixed value $k \in N$, denoting the number of paths to select.						

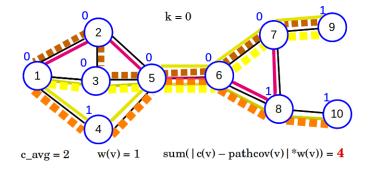

Output: A subset $R_{Opt} \subseteq R_{Aln}$ with $|R_{Opt}| = k$, such that

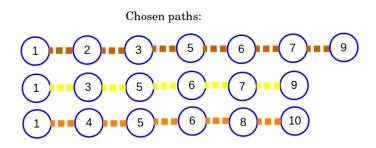
 $\sum_{v \in V} |c(v) - pathcov(v)| \cdot w(v)$

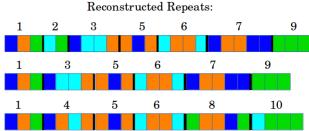

is minimized.

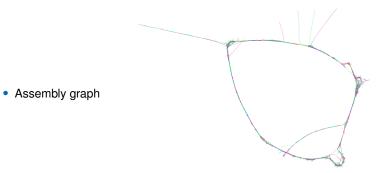
For each node
$$v \in V$$
, $pathcov(v) = c_{avg} \cdot |\{ra \in R_{Opt} | v \in ra\}|$.











Results: CHM13

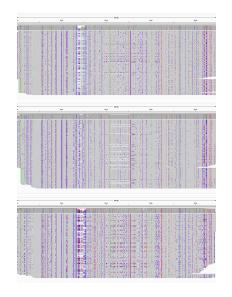
Results: CHM13

 Over- and underexplanation of coverage by the model

Results: CHM13

 Repeat sequences from our model, aligned against the canonical rDNA unit KY962518.1

Results: HPRC samples


- Assembly of five samples from the Human Pangenome Reference Consortium
- Some preprocessing choices were different compared to CHM13

Sample	R _{Aln}	k	c _{avg}	Coverage pre-run	Coverage post-run	Explained coverage	ILP runtime	Gap
HG01258	902	157	22	6843835.8	2523671.1	63.1%	7500s	0.02%
HG01361	689	112	27	5798865.7	2479513.9	57.2%	485s	< 0.01%
HG01952	1485	152	27	7601852.0	2801403.8	63.1%	1826s	< 0.01%
HG02257	397	124	21.5	4691861.1	1801916.7	61.6%	55s	< 0.01%
HG03579	811	230	33	15272751.3	6014994.3	60.6%	544s	< 0.01%

Results: HPRC samples

- Example: HG01258, HG01952, HG02257
- Significant differences in some regions → Junction between coding region and IGS, central part of IGS

Future Challenges

• Room for improvement \rightarrow Improperly explained coverage

Future Challenges

- Improving the model
- Resolving the order of the copies on the genome
- Haplotyping the copies

Thank you for your attention!

Literature

- Sergey Nurk et al. *The complete sequence of a human genome.* Science 376 (6588 2022), pp. 44–53. DOI: 10.1126/science.abj6987.
- Mikko Rautiainen and Tobias Marschall. MBG: Minimizer-based sparse de Bruijn Graph construction. Bioinformatics 37 (16 2021), pp. 2476–2478. DOI: 10.1093/bioinformatics/btab004.
- Mikko Rautiainen and Tobias Marschall. GraphAligner: rapid and versatile sequence- to-graph alignment. Genome Biology 21 (253 2020). DOI: 10.1186/s13059-020-02157-2.
- Jasmijn A. Baaijens et al. *Full-length de novo viral quasispecies assembly through variation graph construction.* In: Bioinformatics 35 (24 2019), pp. 5086–5094. DOI: 1093/bioinformatics/btz443.

 Repeat sequences from our model, aligned against the canonical rDNA unit KY962518.1

• Repeat sequences from the T2T assembly, aligned against the canonical rDNA unit KY962518.1

Idea: Compute edit distance for all pairs of copies from both assemblies

Heinrich Heine Universität Disseldorf

- Find a minimum-weight perfect matching
- Only compute pairs that are similar enough \rightarrow Cutoff *c*

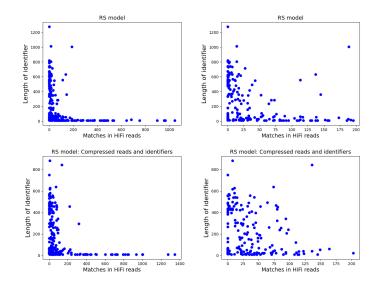
COMPLETE BIPARTITE EDIT DISTANCE GRAPH

- **Input**: Two sets of strings S_1, S_2 . A cutoff $c \in N$.
- **Output:** A complete bipartite graph $G = (V_1, V_2, E)$ where the nodes in V_1, V_2 correspond to the sequences in S_1, S_2 , and a function $f : E \to N$, such that $\forall e = \{v_i, v_j\} \in E : f(e) = \begin{cases} d(s_i, s_j) & \text{if } d(s_i, s_j) \leq c \\ max\{|s_i|, |s_j|\} & \text{else} \end{cases}$

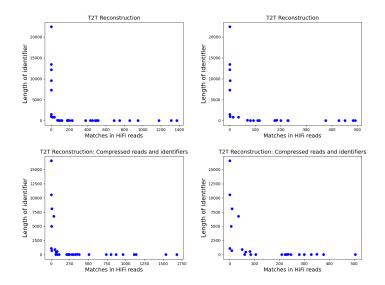
- · The sets of copies differ considerably
- MWPM: Only 53 pairs of repeats with an edit distance $\leqslant 4500$
- For 54 copies from RS model, there is at least one similar copy in the T2T set
- For 215 copies vice versa
- Our copies vary more than the T2T copies → Is this accurate?

• Idea: Retrace unique feature of each repeat copy in the HiFi reads \rightarrow Find Shortest Identifiers

hhu


Heinrich Hein

Homopolymer compression for cleaner results


SHORTEST IDENTIFIERS

- **Input**: A set of strings $S = \{s_0, s_1, ..., s_n\}$.
- **Output:** For each $s_i \in S$, the shortest substring s_i^* of s_i that (1) Occurs only once in s_i , and (2) Occurs in no other string in *S*.

