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Background and Motivation

Flow decomposition (FD), the problem of decomposing a network flow into a set
of source-to-sink paths and associated weights that perfectly explain the flow
values on the edges, is a classical and well-studied concept in Computer Science.
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Motivation

• The main bioinformatics motivation for this paper is multiassembly [1],
reconstruct multiple genomic sequences from mixed samples using short
substrings (called reads) generated cheaply and accurately from
next-generation sequencing technology;

• One example is the reconstruction of RNA transcripts from sequencing
reads, which is essential to characterize gene regulation and function,
development and diseases such as cancer;

• Another is the reconstruction of viral quasispecies which can identify
different strains of a virus in a samples.
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Preliminares

Definition (Flow network)

A tuple G = (V ,E, f) is said to be a flow network if (V ,E) is a DAG with unique
source s and unique sink t, where for every edge (u, v) ∈ E we have an associated
positive integer flow value fuv, satisfying conservation of flow for every
v ∈ V \ {s, t}, namely: ∑

(u,v)∈E

fuv =
∑

(v,w)∈E

fvw. (1)
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Definition (k-Flow Decomposition)

A k-flow decomposition (P,w) for a flow network G = (V ,E, f) is a set of k s-t
flow paths P = (P1, . . . ,Pk) and associated weights w = (w1, . . . ,wk), with each
wi ∈ Z+, such that for each edge (u, v) ∈ E it holds that:∑

i∈{1,...,k} s.t.
(u,v)∈Pi

wi = fuv. (2)
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Flow Conservation

∑
(s,v)∈E

xsvi = 1, ∀i ∈ {1, . . . , k}, (3a)

∑
(u,t)∈E

xuti = 1, ∀i ∈ {1, . . . , k}, (3b)

∑
(u,v)∈E

xuvi −
∑

(v,w)∈E

xvwi = 0, ∀i ∈ {1, . . . , k},∀v ∈ V \ {s, t}. (3c)
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Flow Superposition

∑
i∈{1,...,k}

xuviwi = fuv, ∀(u, v) ∈ E. (4)

Linearized as:

fuv =
∑

i∈{1,...,k}

πuvi, ∀(u, v) ∈ E, (5a)

πuvi ≤ wxuvi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (5b)

πuvi ≤ wi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (5c)

πuvi ≥ wi − (1− xuvi)w, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}. (5d)
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Subpath Constraints

Definition (Flow decomposition with subpath constraints)

Let G = (V ,E, f) be a flow network. Subpath constraints are defined to be a set
of simple paths R = {R1, . . . ,Rℓ} in G (not necessarily s-t paths). A flow
decomposition (P,w) satisfies the subpath constraints if and only if

∀Rj ∈ R, ∃Pi ∈ P such that Rj is a subpath of Pi. (6)
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(a) A flow network with a single subpath
constraint R1 = (a, c, t).
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(b) Constraint R1 is satisfied because for
the ith path we can set ri1 = 1 so that
xaci + xcti ≥ 2ri1 holds .
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Subpath Constraints - Formulation

∀Rj ∈ R, ∃Pi ∈ P such that Rj is a subpath of Pi. (7)

can be written: ∑
(u,v)∈Rj

xuvi ≥ |Rj |rij , ∀i ∈ {1, . . . , k}, ∀Rj ∈ R, (8a)

∑
i∈{1,...,k}

rij ≥ 1, ∀Rj ∈ R. (8b)

Fernando H.C. Dias – FD - ILP 12/22



FD - ILP

Fernando H.C.
Dias

Introduction

Methodology

ILP
Formulation

Results

Conclusions

Inexact Flow

Definition (Inexact flow network)

A tuple G = (V ,E, f , f) is said to be an inexact flow network if (V ,E) is a DAG
with unique source s and unique sink t, where for every edge (u, v) ∈ E we have
associated two positive integer values fuv and fuv, satisfying fuv ≤ fuv.

Given an inexact flow network G = (V ,E, f , f) the minimum inexact flow
decomposition problem is to determine if there exists, and if so, find a
minimum-size set of s-t paths P = (P1, . . . ,Pk) and associated weights
w = (w1, . . . ,wk) with wi ∈ Z+ such that for each edge (u, v) ∈ E it holds that:

fuv ≤
∑

i∈{1,...,k} s.t.
(u,v)∈Pi

wi ≤ fuv. (9)
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Inexact Flow - Formulation

fuv ≤
∑

i∈{1,...,k}

πuvi ≤ fuv, ∀(u, v) ∈ E. (10a)
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Experiments Design

1 Time limit of 60 seconds;

2 Comparison of STANDARD with Toboggan, the implementation by [2] for
their exact FPT algorithm for MFD;

3 Comparison of SUBPATH with Coaster, the implementation by [3] for
MFDSC, which is an exact FPT algorithm extending Toboggan.

4 Comparison of INEXACT with IFDSolver, which is an implementation of a
heuristic algorithm for MIFD by [4];

5 Three different datasets composed of RNA transcripts with range of nodes
between 4 and 50;
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Results

• For the STANDARD formulation, we could solve all instances within 20
seconds. While the TOBOGGAN required at least 1 minute for instances up
to 10 flow-paths. For instances with more than 10 flow-paths, it did not solve
within the runtime limit;

• For the SUBPATH version, the runtime for our formulation is below 30
seconds, while COASTER cannot solve most instances;

• For the INEXACT, the runtime of the heuristic is faster, but the solution is
not optimal (overestimate the number of paths by 2, in average).
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Conclusions

• Fast: all instances were solved in under 20 seconds while state-of-the-start
method requires a few minutes;

• Flexible: capable to be easily adjusted to incorporate new behaviour (as done
with subpath constraints and inexact constraint) without compromising
performance;

• Future Work: Cycles, improvement in inexact flow with Robust Optimization;

• https://github.com/algbio/MFD-ILP
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