Width Helps and Hinders Splitting Flows

Manuel Cáceres¹ Massimo Cairo¹ Andreas Grigorjew¹ Shahbaz Khan² Brendan Mumey³ Romeo Rizzi⁴ Alexandru Tomescu¹ Lucia Williams³

¹University of Helsinki

²Indian Institute of Technology Roorkee

³Montana State University

⁴University of Verona

14 June, 2022

Flow graphs

Given is an *s*-*t* DAG G = (V, E) and a flow $X : E \to \mathbb{Y}$ (e.g., $\mathbb{Y} = \mathbb{N}$, or $\mathbb{Y} = \mathbb{Z}$).

Conservation of flow: $\sum_{e \in \delta^+(v)} X(e) = \sum_{e \in \delta^-(v)} X(e) \, \forall v \in V \setminus \{s, t\}.$

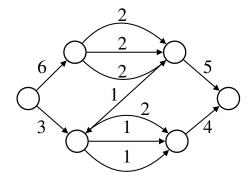


Figure: Simple flow graph.

Minimum Flow Decomposition $(MFD_{\mathbb{Y}})$

Minimum Flow Decomposition (MFD_Y) of (G, X): minimum sized set of *s*-*t* paths and weights $\{(P_1, w_1), \ldots, (P_k, w_k)\}$ ($w_i \in Y$) with

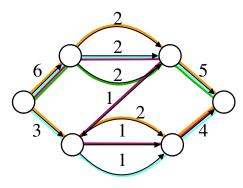


Figure: Flow decomposition in 6 s-t paths.

Use in biology

- $MFD_{\mathbb{N}}$: reconstructing sequences (RNA transcripts, viral strains), transportation planning
- MFD_ℤ: so far unconsidered. Can explain the *difference* between two flows; e.g. differential expression in RNA-seq: minimize the number of up/down regulated genes
- $MFD_{\mathbb{Y}}$ is NP-hard. No good approximations known so far.

- \bullet Approximating $\mathsf{MFD}_{\mathbb{Z}}$ using width:
- \bullet Width hinders greedy in $\mathsf{MFD}_\mathbb{N}$:
- \bullet Width helps greedy in $\mathsf{MFD}_{\mathbb{N}}$:

 $O(\log ||X||)$ $\Omega(\sqrt{m}) \rightarrow \Omega(m/\log m)$ $O(\log |X|)$ on certain graphs

- \bullet Approximating $\mathsf{MFD}_{\mathbb{Z}}$ using width:
- \bullet Width hinders greedy in $\mathsf{MFD}_{\mathbb{N}}$:
- \bullet Width helps greedy in $MFD_{\mathbb{N}}$: Some notation.
 - $||X|| = \max_{e \in E} |X(e)|$
 - $|X| = \sum_{e \in \delta^+(s)} X(e)$ (total flow of X)

 $\begin{array}{l} O(\log \|X\|)\\ \Omega(\sqrt{m}) \to \Omega(m/\log m)\\ O(\log |X|) \text{ on certain graphs} \end{array}$

- \bullet Approximating $\mathsf{MFD}_{\mathbb{Z}}$ using width:
- Width hinders greedy in $MFD_{\mathbb{N}}$:
- Width helps greedy in $MFD_{\mathbb{N}}$:

 $O(\log ||X||)$ $\Omega(\sqrt{m}) \rightarrow \Omega(m/\log m)$ $O(\log |X|)$ on certain graphs

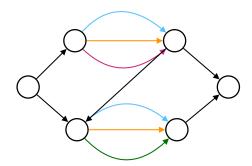


Figure: A graph of width 4, single path edges coloured

- \bullet Approximating $\mathsf{MFD}_{\mathbb{Z}}$ using width:
- Width hinders greedy in $MFD_{\mathbb{N}}$:
- Width helps greedy in $MFD_{\mathbb{N}}$:

 $O(\log ||X||)$ $\Omega(\sqrt{m}) \rightarrow \Omega(m/\log m)$ $O(\log |X|)$ on certain graphs

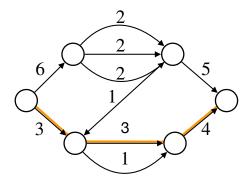


Figure: Orange path of weight 3 highest weight path (greedy-weight)

Observation: Odd edges form (undirected) *s-t* paths and cycles

Power of two-approach

- I Remove" the odd part: Given flow X, define flow Y with ||Y|| ≤ 1 of the same parity as X
- Observe Decompose Y into at most width(G) paths
- Oivide the remaining flow by 2

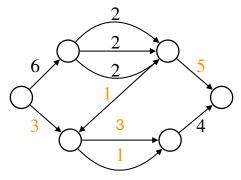


Figure: Example iteration.

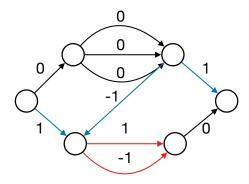


Figure: Example iteration.

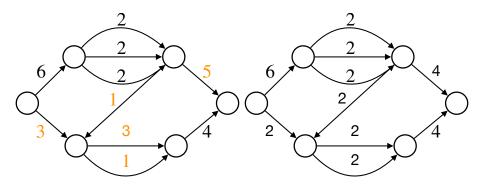


Figure: Example iteration. left: Initial graph, right: Odd part removed

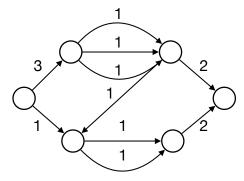


Figure: Example iteration.

Corollary

For any flow $X : E \to \mathbb{Z}$ with $||X|| \le 1$, there exist paths P_1, \ldots, P_k with $k \le \text{width}(G)$ such that $X = P_1 + \cdots + P_\ell - P_{\ell+1} - \cdots - P_k$ (for some $0 \le \ell \le k$).

We can find flows $A \ge 0$ and $B \ge 0$ such that $|A| + |B| \le \text{width}(G)$ and A - B = X.

 $O(\log ||X||) \cdot width(G)$ -Approximation of MFD_Z

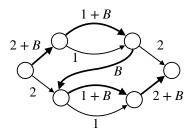
• If ||X|| > 1, write X = 2X' + X'' ($||X''|| \le 1$), decompose X'' as above

- 2 Continue with X = X'
- If $||X|| \leq 1$, decompose X as above

(人間) とくほう くほう

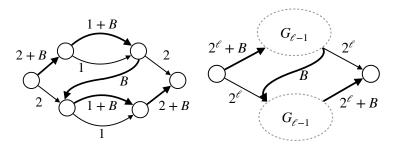
Andreas Grigorjew (University of Helsinki) Width Helps and Hinders Splitting Flows

Width hinders greedy on $\mathsf{MFD}_{\mathbb{N}}$



(a) The base case $(G_1, X_{1,B})$. Bold edges carry flow at least *B*.

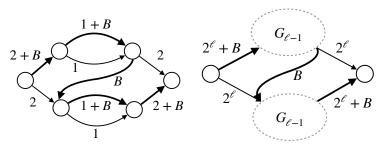
Width hinders greedy on $\mathsf{MFD}_{\mathbb{N}}$



(a) The base case $(G_1, X_{1,B})$. Bold edges carry flow at least *B*.

(b) Building $(G_{\ell}, X_{\ell,B})$ from two copies of $(G_{\ell-1}, X_{\ell-1,B})$ $(\ell > 1)$.

Width hinders greedy on $\mathsf{MFD}_{\mathbb{N}}$



(a) The base case $(G_1, X_{1,B})$. Bold (b) Building $(G_{\ell}, X_{\ell,B})$ from two edges carry flow at least *B*. copies of $(G_{\ell-1}, X_{\ell-1,B})$ $(\ell > 1)$.

 $(G_{\ell}, X_{\ell,B})$ can be decomposed into $\Theta(\ell)$ paths. Greedy-weight uses $\Theta(2^{\ell})$ paths.

 \rightarrow Approximation ratio for greedy-weight on MFD_N is $\Omega(m/\log m)$ for sparse graphs.

Width-stable graphs

Two properties

- We say that G is stable if width(G|X) ≤ width(G) for all non-negative flows X on G.
- We say that G carries paths of large weight if G|_X carries an s-t path of weight at least |X|/width(G) for all non-negative flows X.

Many graphs in practice have these properties (e.g., series-parallel graphs).

Width-stable graphs

Two properties

- We say that G is stable if width(G|X) ≤ width(G) for all non-negative flows X on G.
- We say that G carries paths of large weight if G|_X carries an s-t path of weight at least |X|/width(G) for all non-negative flows X.

Many graphs in practice have these properties (e.g., series-parallel graphs).

Lemma

Given both properties, greedy-weight uses at most $\left\lfloor \log |X| / \log \frac{\operatorname{width}(G)}{\operatorname{width}(G)-1} \right\rfloor + 1$ paths to decompose a non-negative flow X.

Proof: Using Property 2 *c* times induces a flow of $|X| \left(\frac{\text{width}(G)-1}{\text{width}(G)}\right)^c$. Solve for *c* for the term to be smaller than 1.

くロト く伺 ト くきト くきト

- \bullet Width plays important role in $MFD_{\mathbb{Y}}$
- Greedy approximations are worse than hoped
- But not necessarily in practice
- \bullet $MFD_{\mathbb{Z}}$ as relaxation of $MFD_{\mathbb{N}}$ gives theoretical hinsights

Thank you!

European Research Council

Established by the European Commission