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Pangenomic Diversity

Nowadays, many individual genomes per species are available.

Genomic comparison reveals large differences between them

For bacterial species: Even different gene content

What defines a (bacterial) species on a genomic level?
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Classical Pangenomics

Let a genome be a set of strings over the alphabet ΣDNA = {A, C, G, T}.

Gene based pangenome: All genes of genomes g1, . . . , gn

Core genome: All common genes of g1, . . . , gn

Considering the pangenomic core is important for

studying genetic diversity

medical research:

I drug development

I vaccine design

crop plant breeding

Adapted from Guillaume Holley
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Limitations of Gene Based Approaches

Drawbacks of gene based pangenomic approaches:

expensive preprocessing needed (assembly, gene annotation)

genes from different genomes need to be mapped

core features below (and above) gene level remain undiscovered
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Sequence Based Pangenomics

Definition Sequence Based Pangenome

The sequence based pangenome is a set of genomes g1, . . . , gn of some
taxonomic unit t.

Realization: → e.g. colored de Bruijn graph (C-DBG)

Image courtesy of Guillaume Holley
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The Sequence Based Core

How to define the core of a sequence based, graphical pangenome?

Goal: Generalization of gene based core

Idea: Take all nodes (k-mers) shared between all input genomes

Problem:

Variations occur frequently even in core sequences!
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Our Core Definition

Definition Core k-mer

Let G = (V ,E ,C ) be a C-DBG representing a pangenome
p = {g1, g2, . . . , gn}. Let q ∈ [1, n] and δ ≥ 0 be two integers.
A k-mer v ∈ V is called core k-mer if and only if |C (v)| ≥ q
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Our Core Definition

Definition Bridging k-mer

A k-mer v ∈ V is called bridging k-mer if and only if it lies on a path π
connecting two core k-mers and |π| ≤ δ + 2
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Our Core Definition

Definition Core Genome

The core genome of p is defined as the set of all core and bridging k-mers
of G .
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Problem statement

Core Detection Problem

Given a pangenome p = {g1, g2, . . . , gn} represented as a C-DGB of
dimension k ≥ 1. Let q ∈ [1, n] and δ ≥ 0 be two integers. The Core
Detection Problem is to find the core genome of p.

Advantages:

no assembly

no annotations

no gene mapping

How can we find the core?

Tizian Schulz Core Detection February 11, 2021 7



Problem statement

Core Detection Problem

Given a pangenome p = {g1, g2, . . . , gn} represented as a C-DGB of
dimension k ≥ 1. Let q ∈ [1, n] and δ ≥ 0 be two integers. The Core
Detection Problem is to find the core genome of p.

Advantages:

no assembly

no annotations

no gene mapping

How can we find the core?

Tizian Schulz Core Detection February 11, 2021 7



Problem statement

Core Detection Problem

Given a pangenome p = {g1, g2, . . . , gn} represented as a C-DGB of
dimension k ≥ 1. Let q ∈ [1, n] and δ ≥ 0 be two integers. The Core
Detection Problem is to find the core genome of p.

Advantages:

no assembly

no annotations

no gene mapping

How can we find the core?

Tizian Schulz Core Detection February 11, 2021 7



Problem statement

Core Detection Problem

Given a pangenome p = {g1, g2, . . . , gn} represented as a C-DGB of
dimension k ≥ 1. Let q ∈ [1, n] and δ ≥ 0 be two integers. The Core
Detection Problem is to find the core genome of p.

Advantages:

no assembly

no annotations

no gene mapping

How can we find the core?

Tizian Schulz Core Detection February 11, 2021 7



Problem statement

Core Detection Problem

Given a pangenome p = {g1, g2, . . . , gn} represented as a C-DGB of
dimension k ≥ 1. Let q ∈ [1, n] and δ ≥ 0 be two integers. The Core
Detection Problem is to find the core genome of p.

Advantages:

no assembly

no annotations

no gene mapping

How can we find the core?

Tizian Schulz Core Detection February 11, 2021 7



Problem statement

Core Detection Problem

Given a pangenome p = {g1, g2, . . . , gn} represented as a C-DGB of
dimension k ≥ 1. Let q ∈ [1, n] and δ ≥ 0 be two integers. The Core
Detection Problem is to find the core genome of p.

Advantages:

no assembly

no annotations

no gene mapping

How can we find the core?

Tizian Schulz Core Detection February 11, 2021 7



Algorithm

Idea:

for each core k-mer explore graph by BFS of depth δ

if core k-mer found, mark all k-mers on path as bridging

→ Problem: Search space grows exponentially in δ if graph is complex
Idea:

start BFS in the middle of a path connecting core k-mers

requires only 2 BFSs of depth δ
2

→ But: Search needed for every non-core k-mer

Idea: Use compacted C-DBG

k-mers connected by simple path are merged

BFS only needed at the end of simple paths (≤ 2·#unitigs)

Further speed gain: Make use of information collected during past BFSs

Implementation (based on Bifrost) is called Corer
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Evaluation – setting

Evaluation on pangenome data sets of different sizes:

Yersinia pestis (n = 48)

Enterococcus faecium (n = 153)

Parameters:

k ∈ {21, 31}

q = n (100%)

δ ∈ {0, 40, 100, 300}

Experiments performed single-threaded on compute cluster
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Runtime and memory usage
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Comparison to gene based approach

δ
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0
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Comparison to gene based approach
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Comparison to sequence based approaches

Comparison planned to

Panseq (Laing et al. 2010)

Sibelia (Minkin et al. 2013)

SplitMEM (Marcus et al. 2014)

iMGE (Wang et al. 2014)

...
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Outlook

Directions of future work:

generalization for accessory genome detection

hierarchical core genome representation

generation of a “reference core genome”
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End

Thank you for your attention!
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