Genome assembly, a universal theoretical framework: unifying and generalizing the safe and complete algorithms

Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian Schmidt,

Alexandru I. Tomescu and Elia C. Zirondelli

Genome assembly, a universal theoretical framework / Sebastian Schmidt

1 Genome Assembly & Safety

- 2 Current Safe and Complete Algorithms
- 3 Unifying the Theory: the Hydrostructure (Cairo et al., 2020a)
- **4** Hydrostructure Algorithms

Genome assembly, a universal theoretical framework / Sebastian Schmidt

Genome Assembly & Safety

Genome assembly, a universal theoretical framework / Sebastian Schmidt

February 11, 2021

Models of genome assembly

Genome graph:

- Used by almost all modern
 assemblers
- Each edge is part of the genome
- The genome is a walk

Models of genome assembly

Genome graph:

- Used by almost all modern
 assemblers
- Each edge is part of the genome
- The genome is a walk

Additional information:

• There is a single circular genome

Models of genome assembly

Genome graph:

- Used by almost all modern
 assemblers
- Each edge is part of the genome
- The genome is a walk

Additional information:

• There are multiple circular genomes

Finding the true genome

Challenge:

• Infinitely many possible solutions What is the correct one?

Finding the true genome

Challenge:

• Infinitely many possible solutions What is the correct one?

Solution:

- Find only safe subwalks of the true genome
- But be as complete as possible

Father: AATGCAGTATGCAGTCATGCAGTTACGACGT Mother: AATGCAGTATGCAGTCATGCAGTGACGACGT

Genome assembly, a universal theoretical framework / Sebastian Schmidt

Current Safe and Complete Algorithms

Genome assembly, a universal theoretical framework / Sebastian Schmidt

February 11, 2021

Properties of current safe and complete algorithms

Single circular, Omnitigs:
characterisation
optimal O(mn)(Tomescu and Medvedev, 2017)
(Cairo et al., 2019)
(Cairo et al., 2020b)output optimal O(m + n + o)(Cairo et al., 2020b)

Multi circular:

 $O(m^2n)$ (Acosta, Mäkinen, and Tomescu, 2018)

Properties of current safe and complete algorithms

Single circular: O(mn), O(m + n + o)Multi circular: $O(m^2n)$

But many other models are relevant:

- *k* solution walks
- linear models
- partial coverage
- partial visibility

Unified theory for all combinations of these?

Unifying the Theory: the Hydrostructure (Cairo et al., 2020a)

Genome assembly, a universal theoretical framework / Sebastian Schmidt

February 11, 2021

• Defined on a strongly connected graph $G := V \cup E$ and a walk $W \subseteq G$

- Defined on a strongly connected graph $G := V \cup E$ and a walk $W \subseteq G$
- In this talk: only non-trivial hearts of paths (without repetitions of nodes/edges)

 Decomposes the graph into four regions

- Decomposes the graph into four regions
- The connectivity between regions is restricted

Unification: the hydrostructure of a walk $\ensuremath{\mathcal{W}}$

- Decomposes the graph into four regions
- The connectivity between regions is restricted
- If Vapor is a path, then *W* is a Sea-Cloud bottleneck

Unifie of a v

Unification: the hydrostructure of a walk *W*

- Decomposes the graph into four regions
- The connectivity between regions is restricted
- If Vapor is a path, then *W* is a Sea-Cloud bottleneck
- For any model: if each solution walk goes from Sea to Cloud, then *W* is safe

- *W* is a walk from edge *f* to edge *g*
- *R*⁺(*W*) is everything reachable from *f* in *G* \ *g*

- *W* is a walk from edge *f* to edge *g*
- *R*⁺(*W*) is everything reachable from *f* in *G* \ *g*
- R⁻(W) is everything backwards-reachable from g in G \ f

- *W* is a walk from edge *f* to edge *g*
- *R*⁺(*W*) is everything reachable from *f* in *G* \ *g*
- *R*[−](*W*) is everything backwards-reachable from *g* in *G* \ *f*

- *W* is a walk from edge *f* to edge *g*
- *R*⁺(*W*) is everything reachable from *f* in *G* \ *g*
- *R*⁻(*W*) is everything backwards-reachable from *g* in *G* \ *f*
- W is a Sea-Cloud bottleneck if and only if Vapor is a path

Definition 1: $R^+(W) := \{x \in G \mid f \to x \in G \setminus g\}$ **Definition 2:** $R^-(W) := \{x \in G \mid x \to g \in G \setminus f\}$ **Definition 3:** *W* is a Sea-Cloud bottleneck if each walk from Sea to Cloud has *W* as subwalk

Lemma: W is a Sea-Cloud bottleneck \iff Vapor is a path

• f is the only way to enter $R^{-}(W)$ (by Def. 2)

Definition 1: $R^+(W) := \{x \in G \mid f \to x \in G \setminus g\}$ **Definition 2:** $R^-(W) := \{x \in G \mid x \to g \in G \setminus f\}$ **Definition 3:** *W* is a Sea-Cloud bottleneck if each walk from Sea to Cloud has *W* as subwalk

Lemma: W is a Sea-Cloud bottleneck \iff Vapor is a path

- f is the only way to enter $R^{-}(W)$ (by Def. 2)
- g is the only way to exit $R^+(W)$ (by Def. 1)

Definition 1: $R^+(W) := \{x \in G \mid f \to x \in G \setminus g\}$ **Definition 2:** $R^-(W) := \{x \in G \mid x \to g \in G \setminus f\}$ **Definition 3:** *W* is a Sea-Cloud bottleneck if each walk from Sea to Cloud has *W* as subwalk

Lemma: W is a Sea-Cloud bottleneck \iff Vapor is a path

- f is the only way to enter $R^{-}(W)$ (by Def. 2)
- g is the only way to exit $R^+(W)$ (by Def. 1)
- \Rightarrow Sea-Cloud walks have a head(f)-tail(g) subwalk X

Definition 1: $R^+(W) := \{x \in G \mid f \to x \in G \setminus g\}$ **Definition 2:** $R^-(W) := \{x \in G \mid x \to g \in G \setminus f\}$ **Definition 3:** *W* is a Sea-Cloud bottleneck if each walk from Sea to Cloud has *W* as subwalk

Lemma: W is a Sea-Cloud bottleneck \iff Vapor is a path

- f is the only way to enter $R^{-}(W)$ (by Def. 2)
- g is the only way to exit $R^+(W)$ (by Def. 1)
- \Rightarrow Sea-Cloud walks have a head(f)-tail(g) subwalk X
- A minimal one is in Vapor

Cloud $R^- \setminus R$ Vapor $R^+ \cap R$ Sea

Definition 1: $R^+(W) := \{x \in G \mid f \to x \in G \setminus g\}$ **Definition 2:** $R^-(W) := \{x \in G \mid x \to g \in G \setminus f\}$ **Definition 3:** *W* is a Sea-Cloud bottleneck if each walk from Sea to Cloud has *W* as subwalk

Lemma: *W* is a Sea-Cloud bottleneck \iff Vapor is a path

- f is the only way to enter $R^{-}(W)$ (by Def. 2)
- g is the only way to exit $R^+(W)$ (by Def. 1)
- \Rightarrow Sea-Cloud walks have a head(*f*)-tail(*g*) subwalk *X*
- A minimal one is in Vapor
- \Rightarrow If W Sea-Cloud bottleneck, then fXg = W, so Vapor is a path

Sea

 $\frac{\mathsf{Cloud}}{R^-\setminus R}$

Vapor

 $R^+ \cap R$

Definition 1: $R^+(W) := \{x \in G \mid f \to x \in G \setminus g\}$ **Definition 2:** $R^-(W) := \{x \in G \mid x \to g \in G \setminus f\}$ **Definition 3:** *W* is a Sea-Cloud bottleneck if each walk from Sea to Cloud has *W* as subwalk

Lemma: *W* is a Sea-Cloud bottleneck \iff Vapor is a path

- f is the only way to enter $R^{-}(W)$ (by Def. 2)
- g is the only way to exit $R^+(W)$ (by Def. 1)
- \Rightarrow Sea-Cloud walks have a head(*f*)-tail(*g*) subwalk *X*
- A minimal one is in Vapor
- \Rightarrow If W Sea-Cloud bottleneck, then fXg = W, so Vapor is a path
- \leftarrow If Vapor is a path, then fXg = W, so W is Sea-Cloud bottleneck

• For any model: if each solution walk goes from Sea to Cloud, then *W* is safe

- For any model: if each solution walk goes from Sea to Cloud, then *W* is safe
- Simplifies single circular

- For any model: if each solution walk goes from Sea to Cloud, then *W* is safe
- Simplifies single circular
- Simplifies multi circular

- For any model: if each solution walk goes from Sea to Cloud, then *W* is safe
- Simplifies single circular
- Simplifies multi circular
- Simplifies single/multi linear

- For any model: if each solution walk goes from Sea to Cloud, then *W* is safe
- Simplifies single circular
- Simplifies multi circular
- Simplifies single/multi linear
- Simplifies subset covering

- For any model: if each solution walk goes from Sea to Cloud, then *W* is safe
- Simplifies single circular
- Simplifies multi circular
- Simplifies single/multi linear
- Simplifies subset covering
- Simplifies ...

Hydrostructure Algorithms

Genome assembly, a universal theoretical framework / Sebastian Schmidt

February 11, 2021

Algorithmic properties: verification

O(m) construction:

• O(m) verification algorithms (O(mn) for linear $2 \le k \le O(n)$, subset visibility)

Genome assembly, a universal theoretical framework / Sebastian Schmidt

Algorithmic properties: enumeration

O(m) incremental construction:

• O(m + o) enumeration of safe subwalks of a given bottleneck walk (O(mn) for linear $2 \le k \le O(n)$, subset visibility)

Safe walks are subwalks of omnitigs:

- Omnitig enumeration takes O(mn) time and only O(n) of them are bottlenecks
- Optimal O(mn + o) enumeration of all maximal safe walks $(O(m^2n)$ for linear $2 \le k \le O(n))$

Genome assembly, a universal theoretical framework / Sebastian Schmidt

Recap/Conclusion

- The hydrostructure unifies the theory of safe and complete genome assembly
- The hydrostructure yields optimal algorithms for most model combinations

Genome assembly, a *universal* theoretical framework / Sebastian Schmidt

References I

Acosta, Nidia Obscura, Veli Mäkinen, and Alexandru I. Tomescu (2018). "A safe and complete algorithm for metagenomic assembly". In: *Algorithms for Molecular Biology* 13.1, 3:1–3:12. DOI: 10.1186/s13015-018-0122-7. URL: https://doi.org/10.1186/s13015-018-0122-7.
 Cairo, Massimo et al. (2019). "An Optimal *O(nm)* Algorithm for Enumerating All Walks Common to All Closed Edge-covering Walks of a Graph". In: *ACM Trans. Algorithms* 15.4, 48:1–48:17. DOI: 10.1145/3341731. URL: https://doi.org/10.1145/3341731.

Cairo, Massimo et al. (2020a). "Genome assembly, a universal theoretical framework: unifying and generalizing the safe and complete algorithms". In: arXiv preprint arXiv:2011.12635.

References II

Cairo, Massimo et al. (2020b). "Genome assembly, from practice to theory: safe, complete and linear-time". In: *arXiv preprint arXiv:2002.10498*.
 Tomescu, Alexandru I. and Paul Medvedev (2017). "Safe and complete contig assembly through omnitigs". In: *Journal of Computational Biology* 24.6. Preliminary version appeared in RECOMB 2016., pp. 590–602.

Thank you for attending! Questions?

- The hydrostructure unifies the theory of safe and complete genome assembly
- The hydrostructure yields optimal algorithms for most model combinations

Genome assembly, a *universal* theoretical framework / Sebastian Schmidt

Safety in the single circular model

Unitigs

Genome assembly, a universal theoretical framework / Sebastian Schmidt

Safety in the single circular model

Safety in the single circular model

Genome assembly, a universal theoretical framework / Sebastian Schmidt

Algorithmic Properties

Verification:

 O(m) verification algorithms (O(mn) for linear
 2 ≤ k ≤ O(n) subset visibility)

Algorithmic Properties

Verification:

 O(m) verification algorithms (O(mn) for linear
 2 ≤ k ≤ O(n) subset visibility)

Enumeration:

• Optimal O(mn + o)enumeration of all maximal safe walks $(O(m^2n)$ for linear $2 \le k \le O(n))$

