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Simple model

Generative model
> Start with a genome A
> Mutate every nucleotide with probability r
> Get a new genome B
> Assume that all k-mers are unique.

Nucleotide sequence

v B v v e
\I\xwlwllwxlwxwlw
L L L L L



Simple model

Generative model

Nucleotide sequence

> Start with a genome A A
B

> Mutate every nucleotide with probability r oo
> Get a new genome B
> Assume that all k-mers are unique.
What do we observe?
> not the nucleotide sequences
> Nmut
» Number of mutated k-mers

X XX
s

K-mers starting at pos i



Simple model

Generative model

Nucleotide sequence

> Start with a genome A A
B

> Mutate every nucleotide with probability r oo
> Get a new genome B
> Assume that all k-mers are unique.
What do we observe?
> not the nucleotide sequences
> Nmut
» Number of mutated k-mers
> Jaccard

> _JANB| =Ny
J(A, B) = 2081 = Tinma

X XX
s

K-mers starting at pos i



Simple model

Generative model Nucleotide sequence

> Start with a genome A A R
> Mutate every nucleotide with probability r; ‘e'e'o'o'0'00 0000000000
> Get a new genome B K-mers starting at pos i

> Assume that all k-mers are unique. | |

What do we observe?

> not the nucleotide sequences
> Nmut
» Number of mutated k-mers

» Jaccard

> _JANB| =Ny
J(A, B) = 2081 = Tinma

» Minhash Jaccard
> Ay = minhash sketch of A
> Bk minhash sketch of B
> J= J(Aska Bsk)

1> 1>



Motivating applications

Mash distance [Ondov et al., 2016]
> Take two evolutionary related sequences
> Observe J from two genomes
> Assume that genomes evolved under the simple model
> Estimate r; from J.
» What about a confidence interval for r?

> Given that the two sequences evolved under this simple model, and we
observe Npy,t, what is an interval that will contain r; with 95% probability?



Motivating applications

Mash distance [Ondov et al., 2016]
> Take two evolutionary related sequences
> Observe J from two genomes
> Assume that genomes evolved under the simple model
> Estimate r; from J.
» What about a confidence interval for ry?

> Given that the two sequences evolved under this simple model, and we
observe Npyut, what is an interval that will contain r; with 95% probability?

Alignments of reads to de Bruijn graph (minimap2, jabba, lorma)
> A read is generated from a genome location
> sequencing error rate ry.
> Is a putative genome location the one that generated the read?

> \We observe Nput
> Want to accept/reject this alignment, with 95% chance of being correct.

> A hypothesis test with significance level 95% for Nyt
> Given r; what is the range into which Ny, would fall with 95% probability?

'putative genome location



Distribution of Nu¢

Expectation

Expectation is easy.

P> Let X; be the indicator r.v. if k-mer starting at position / is mutated.

> Let E[X;] £ r, = (1 — (1 — r1)¥) be the probability that a k-mer is mutated.
> Nmut - EXi

> E[Nmut] = E[Z X,] = LE[X,] = er.
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Expectation

Expectation is easy.

P> Let X; be the indicator r.v. if k-mer starting at position / is mutated.

> Let E[X;] £ r, = (1 — (1 — r1)¥) be the probability that a k-mer is mutated.
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> E[Nmut] = E[Z X,] = LE[X,] = er.
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K-mers starting at pos i

Is Nyt a binomial?

» Binomial is sum of independent Bernoulli trials
» But nearby Xjs are dependent.



Dependency lemma and variance

Lemma
> If j —i > k, then X; and X; are independent
P Ifj—i<k PrXi=1,X;=1]=2r — 1+ (1 — r)k~
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Dependency lemma and variance

Lemma

> If j —i > k, then X; and X; are independent

P Ifj—i<k PrXi=1,X;=1]=2r — 1+ (1 — r)k~
Proof

Pr[Case] Pr[X; = 1,X; = 1| Case]

1-(1—r) PrlX; =1] =1y

. A=r)Y (1= —r)FTH) 1

N/A 0
H_J

Lemma
> Var[Nmut] = L(1 — re)(r(2k + 2 —1) = 2k) + o(L)



M-dependent variables and Main Technique Theorem

A sequence of L random variables Xp, ..., X;_1 is said to be m-dependent if there
exists a bounded m such that if j — i > m, then the two sets {Xp,..., X;} and
{Xj,..., X, —1} are independent [Hoeffding et al., 1948].
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Nyt is sum of m-dependent variables, with m = k — 1.
Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
Stein’s method also gives us the rate of convergence [Ross, 2011].

We can derive hypothesis test using same strategy as with Binomial

vVvyYvyVvyy

Main Technique Theorem
> Let X be a sum of m-dependent Bernoulli random variables.
> Then, X € E[X] & zo+/Var(X) with limiting® probability «,
> z, is value of inverse Normal CDF at (1 — «)/2
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A sequence of L random variables Xp, ..., X;_1 is said to be m-dependent if there
exists a bounded m such that if j — i > m, then the two sets {Xp,..., X;} and
{Xj,..., X, —1} are independent [Hoeffding et al., 1948].
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independent sets

Nyt is sum of m-dependent variables, with m = k — 1.
Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
Stein’s method also gives us the rate of convergence [Ross, 2011].
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Nyt and Jaccard

Hypothesis tests and confidence intervals
Corollary of Main Technique Theorem

» Nmut € Lrg & 2o/ Var(Nmyt) with limiting™ probability «,
*assuming r1 and k are independent of L

To compute Cl for r,
> Numerically find the range of r; for which Ny is in the test range.

Suppose we observe T = f(Nmut)

> f(x) is a monotone function

L—Npmut

> e.g. Jaccard = TR T
mui

Corollaries
> With limiting* probability o,
» f(Nmut) € f(Lry & za\/Var(Nmut))
> Jc <L—er—za\/Var(N,,,uf) L—er+zo“/Var(Nm,_,t))

L+Lrg+zo \/Var(Nmut) ’ L+Lre—zq \/Var(Nmu[)




Minhash Jaccard estimator
a.k.a. Mash distance
Two layers of randomness
» Mutation process
> We can apply our Main Technique
> Sketching process

» Our Main Technique does not apply
» .. .because sketch uses global information
> We use a different approach

Theorem

> With limiting* probability o, jiow < J < jhign



Islands and oceans

Island definition
» An island is a maximal interval of mutated k-mers.

» Sequence can be partitioned into alternated islands and oceans.

K-mers startingatpos/ eeeceeececcccccecsese

» Number of islands is 3=, B;.

» B; =1 iff the k-mer at pos i is mutated and at at i + 1 is not.
> B;_; =1 is special end case.
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Islands and oceans

Island definition
» An island is a maximal interval of mutated k-mers.

» Sequence can be partitioned into alternated islands and oceans.

Border (B;)

K-mers starting atposi [pedescpeodesssspees]
island ocean

» Number of islands is 3=, B;.

» B; =1 iff the k-mer at pos i is mutated and at at i + 1 is not.
> B;_; =1 is special end case.

Steps to derive hypothesis test for number of islands
» Derive Pr[B; =1, B; =1].
» Confirm that B; and B; are independent if they are far apart.
> Derive E(Njgjang) and Var(Nisiand)
»> Apply Main Technique Theorem
» Nisjand € E(Nisiand) = za\/\m with limiting* probability «.



Summary of theoretical results

the expectation, variances, and intervals derived in the paper

Variable Expectation Variance « interval

Ninut Lg L(1 — q)(q(2k + AI — 1) —2k) |Lq % za+/Var(Nmut)

Nistand Lrn(1—q) L (1 —q)(1 — (1 — q)(2k + 1)) | E[Njsiang] = za v/ Var(Nisjand)
Nocean Lrn(1—q) Lri(1 — q)(1 — (1 — q)(2k + 1)) | E[Nocean] £ 2o v/ Var(Nocean)
Jaccard — — (see prev slide)

minhash Jaccard | — — (jlowvjhigh)

Cper ** La—a)@tn (k=1)) | oe paper E[Cper] £ za v/ Var(Cpe,)

L+k—1

** Coverage by exact regions [Miclotte et al., 2016]

*Only higher order terms are shown here, see paper for exact expressions.



Experimental results
Nput confidence intervals
Simulation experiments
> Starting sequence with no dup k-mers
» 10,000 replicates for each cell.

» Report fraction of replicates for which the
true rp falls into the predicted 95% Cl.

L = 10, 000 rn
|0.001 001 01 0.2
k=100| 095 095 — —
51| 0.95 0.95 —
21| 095 095 0.95
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Nput confidence intervals
Simulation experiments
> Starting sequence with no dup k-mers
» 10,000 replicates for each cell.
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L = 10, 000 r
|0.001 001 01 0.2
k=100| 095 095 — —
51| 0.95 0.95 —
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Experimental results

Npmut confidence intervals

Simulation experiments
L = 10, 000 r

> Starting sequence with no dup k-mers [ E—

> . |0.001 0.01 01 0.2

10,000 replicates for each cell. 100 o0s oen — _—

H H H 51 0.95 0.95 —_

» Report fractl_on of repllca_tes for which the 21| o8 oos oo8
true rp falls into the predicted 95% Cl.

L = 1,000 n

Experiments with E.Coli |[0.001 001 01 02

> Simulation done on E.Coli sequence k= 1211) 0.95 ST T

21 0:95 0.95 0.95

» ClI calculator only observes

> set of k-mers before (A)
> set of k-mers before (B)

» Cl calculator defines — —
> L=(|Al+|Bl)/2. st 100 100 —
Nmut = L—|AN B : -
E.Coli rn
rn=|0001 001 01 0.2
k = 100 0.95 0.95 —_ —_
51 0.95 095 0.95 —_

21 0.95



Experimental results

Mash distance (i.e. minhash Jaccard estimator)

> Table 1 in [Ondov et al., 2016] tested the point estimate on a range of values.
> k=21
» | = 4,500,000
> Varying sketch size and nry
> We replicate their experiments, but instead predict 95% Cls
> 1,000 replicates for each cell

\ ra (k)
| .05(.659) | .15(.967) | .25(.998)
sketch size = 100 1.00 1.00
1,000 1.00
10,000 0.95
100,000 0.95 0.95

1,000,000 0.95




Experimental results

Mash distance (i.e. minhash Jaccard estimator)

> Table 1 in [Ondov et al., 2016] tested the point estimate on a range of values.
> k=21
» | = 4,500,000
> Varying sketch size and nry
> We replicate their experiments, but instead predict 95% Cls
> 1,000 replicates for each cell

r1(rg)
| .05(.659) | .15(.967) | .25(.998)
sketch size = 100 1.00 1.00
1,000 1.00
10,000 0.95
100,000 0.95 0.95
1,000,000 0.95
> We also simulated with E.coli.
\ r1(ry)
| .05(.659) | .15(.967) | .25(.998)
sketch size = 100 1.00 1.00
1,000 1.00
10,000
100,000 0.95




Experimental results
Minimap2 [Li, 2018] and Jabba [Miclotte et al., 2016] read filtering
Minimap2

> Filters out alignment if r; estimate is far from
error rate

» Estimates r1 from the number of seeds that
match a location

> =1 n
€= zlog

> Using our model improves r; estimate.
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Experimental results
Minimap2 [Li, 2018] and Jabba [Miclotte et al., 2016] read filtering
Minimap2

> Filters out alignment if r; estimate is far from
error rate

» Estimates r1 from the number of seeds that
match a location

> e=1 n
€= 1 log+
> Using our model improves r; estimate.
Jabba

> Filters out alignment if coverage by exact
regions ( Cpe,) “significantly deviates” from
expectation.

> What is “significantly”?
> We can use a hypothesis test for Cpe,

error of estimate
0.00 0.05 0.10

-0.05

-0.10

---- Mean+StdDev

520 2

02

-~ Mean-StdDev

0 3B 40

K-mer size

> o




Conclusion

» Simple mutation model has been widely used but never studied in depth

> We show a technique for deriving hypothesis tests and confidence intervals

> Exploit the fact that k-mer dependecies are local

» We derive these for a few natural random variables.

» Can we predict when the approximations stop working?

> E.g. in Binomial, this is when np(1 — p) is low

Variable Expectation Variance « interval

Nt Lq L(1 — q)(q(2k + % — 1) — 2k) Lq £ zo /Var(Nmut)

Nistand Ln(1—q) Lri(1 = q)(1 — ra(1 — q)(2k + 1)) | E[Njgiang] £ za v/ Var(Nisiand)
Nocean Lri(1—q) Lri(1 = q)(1 — ra(1 — q)(2k + 1)) | E[Nocean] £ 2o v/ Var(Nocean)
Jaccard — — (see prev slide)

minhash Jaccard

ok
Cher

L(1—qz(1+r1(k—1))

+k—1

see paper

Ullow » Jhigh)
E[Cher] 2o/ Var(Cher)
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