
Cuttlefish: Fast, parallel, and low-memory
compaction of de Bruijn graphs from large-scale

genome collections
DSB’2021

Jamshed Khan and Rob Patro

University of Maryland, College Park, MD

Thu 11th Feb, 2021

Context

With the increasing throughput of sequencing, we now have—
- thousands of mammalian genomes
- genomes orders of magnitude larger to typical mammalian
genomes, e.g. the sugar pine (∼31 Gbp) and the mexican
walking fish (∼32 Gbp)

There is an increasing need for (efficient) —
- indices
- representations for comparative genomics and pan-genome
analysis

Context

With the increasing throughput of sequencing, we now have—
- thousands of mammalian genomes
- genomes orders of magnitude larger to typical mammalian
genomes, e.g. the sugar pine (∼31 Gbp) and the mexican
walking fish (∼32 Gbp)

There is an increasing need for (efficient) —
- indices
- representations for comparative genomics and pan-genome
analysis

Context
Reference representations

Simplest form—

What we (may) intend to have—

Images are borrowed from Ilia Minkin.

Context
Reference representations

Simplest form—

What we (may) intend to have—

Images are borrowed from Ilia Minkin.

Context
De Bruijn Graphs

An excellent object to represent genome references (and
sequencing reads).

And the (colored) compacted variant is of specific interest to us.

Context
De Bruijn Graphs

An excellent object to represent genome references (and
sequencing reads).

And the (colored) compacted variant is of specific interest to us.

Context
De Bruijn Graphs

Image borrowed from Ilia Minkin.

Context
De Bruijn graphs

Images borrowed from Ilia Minkin.

Context
De Bruijn Graphs

We tackle the initial steps of whole-genome analysis pipelines—
time- and memory-efficient construction of the (colored)
compacted de Bruijn graphs.

Preliminaries
Bidirected de Bruijn graphs

Figure: G(S, k) for S = {CGACATGTCTTAG,GCTCTTAG} with k = 3.

Each vertex (canonical k-mer) has two sides: front and back.

Preliminaries
Compacted bidirected de Bruijn graphs

Figure: G(S, k) and Gc(S, k).

Algorithm
Motivation

Given a set of references R —

Naïve-Compaction(R)
1 G = Construct-de-Bruijn-Graph(R)
2 Gc = Compact-Using-Linear-Traversal(G)
3 return Gc

- Infeasible—the space requirements are enormous.
- Need to bypass the G(R, k) construction.

Algorithm
Motivation

Given a set of references R —

Naïve-Compaction(R)
1 G = Construct-de-Bruijn-Graph(R)
2 Gc = Compact-Using-Linear-Traversal(G)
3 return Gc

- Infeasible—the space requirements are enormous.
- Need to bypass the G(R, k) construction.

Algorithm
Motivation

Implicit walk over G(S, k):

- For an edge-centric de Bruijn graph, a complete walk
traversal w(s) over G(s, k) can be obtained through a scan
over s, without having G(s, k);

- and the maximal unitigs of G(s, k) are contained as
subpaths in this walk.

Algorithm
Motivation

Implicit walk over G(S, k):
- For an edge-centric de Bruijn graph, a complete walk
traversal w(s) over G(s, k) can be obtained through a scan
over s, without having G(s, k);

- and the maximal unitigs of G(s, k) are contained as
subpaths in this walk.

Algorithm
Motivation

Implicit walk over G(S, k):
- For an edge-centric de Bruijn graph, a complete walk
traversal w(s) over G(s, k) can be obtained through a scan
over s, without having G(s, k);

- and the maximal unitigs of G(s, k) are contained as
subpaths in this walk.

Algorithm
Flanking vertices of the maximal unitigs

- If each vertex in G(S, k) can be characterized as flanking or
internal (w.r.t to the maximal unitigs), the unitigs
themselves can then be extracted through identifying
subpaths having flanking vertices at both ends.

Figure: CGA,GAC,ATG,AGA,CTA,AGC, and CTC are flanking.

- Thus the graph compaction problem can be reduced to the
problem of determining the set of the flanking vertices.

Algorithm
Flanking vertices of the maximal unitigs

- If each vertex in G(S, k) can be characterized as flanking or
internal (w.r.t to the maximal unitigs), the unitigs
themselves can then be extracted through identifying
subpaths having flanking vertices at both ends.

Figure: CGA,GAC,ATG,AGA,CTA,AGC, and CTC are flanking.

- Thus the graph compaction problem can be reduced to the
problem of determining the set of the flanking vertices.

Algorithm
Flanking vertices of the maximal unitigs

A vertex v in G(S, k) is referred to as a flanking vertex if it has
a side sv with —
1. 0 or >1 incident edges
2. or, exactly one edge (v, sv, u, su), and su has >1 incident

edges.

Figure: CGA,GAC,ATG,AGA,CTA,AGC, and CTC are flanking.

Algorithm
A DFA model for the vertices

In G(S, k), a side of a vertex can be considered to be in five
different configurations—

- one for each unique singleton edge;
- one for when it has 6= 1 distinct edges.

Any other adjacency information is irrelevant for our purposes.

Thus, a vertex can be in (5× 5) = 25 configurations (or, states).

Algorithm
A DFA model for the vertices

In G(S, k), a side of a vertex can be considered to be in five
different configurations—

- one for each unique singleton edge;
- one for when it has 6= 1 distinct edges.

Any other adjacency information is irrelevant for our purposes.

Thus, a vertex can be in (5× 5) = 25 configurations (or, states).

Algorithm
A DFA model for the vertices

Each vertex is treated as a deterministic finite-state automaton
(DFA) (Q,Σ ′, δ, q0, Q

′):

Algorithm
A DFA model for the vertices

Each vertex is treated as a deterministic finite-state automaton
(DFA) (Q,Σ ′, δ, q0, Q

′):
- q0 is the initial state of the DFA—the unvisited state.

Algorithm
A DFA model for the vertices

Each vertex is treated as a deterministic finite-state automaton
(DFA) (Q,Σ ′, δ, q0, Q

′):
- Q ′ is the set of possible 25 states, which can be partitioned
into four disjoint classes:

Algorithm
A DFA model for the vertices

Each vertex is treated as a deterministic finite-state automaton
(DFA) (Q,Σ ′, δ, q0, Q

′):
- δ is the transition function.

Algorithm
A DFA model for the vertices

The transition function δ –

Algorithm
A DFA model for the vertices

A high-level view of the possible types of transitions between
states of the four classes:

Algorithm
Hash table structure for the automata

We maintain—
1. a minimal perfect hash as the hash function(BBHash 4) (the

set K of keys are static) — taking ∼3.7 bits/k-mer 5

2. a bit-packed array for the hash buckets — taking
dlog2(26)e = 5 bits/k-mer

4Limasset, A. et al. (2017)
5in theory, this could be < 2 bits/k-mer using a more compact MPHF

Algorithm
The Cuttlefish algorithm

For a set S of input strings—

Cuttlefish(S)
1 K = Extract-Unique-k-mers(S)
2 h = Construct-Minimal-Perfect-Hash-Function(K)
3 B = Compute-States(S, h, |K|)
4 for each s ∈ S
5 Extract-Maximal-Unitigs(s, h, B)

Algorithm
Asymptotics

For a reference collection R with total length m and n distinct
k-mers:

- the running time is O((m+ n)(dk/32e+ h)), h being an
expected constant

- the memory usage is Θ(8.7n) = Θ(n)

Results
Dataset characteristics

Individual genome references from —
- human (∼ 3.2 Gbp);
- western gorilla (∼ 3 Gbp);
- and sugar pine (∼ 27.6 Gbp).

Collections of references —
- 62 E. Coli (∼ 310 Mbp);
- 7 humans (∼ 21 Gbp);
- 7 apes (∼ 18 Gbp);
- 11 conifer plants (∼ 204 Gbp);
- 100 humans (∼ 322 Gbp).

Results
Benchmarking comparisons

Bifrost deGSM TwoPaCo Cuttlefish

Dataset
Thread-
count

k Build Build Build Build

Human

1
31 04:54:50 (27.23) 01:54:41 (37.94) 01:13:19 (4.15) 32:59 (2.79)
61 05:16:51 (50.19) 02:20:57 (84.16) 01:10:18 (6.02) 38:21 (3.06)

8
31 01:33:54 (27.23) 25:20 (37.94) 12:57 (5.04) 05:49 (2.79)
61 01:20:28 (50.18) 47:52 (84.16) 11:28 (5.46) 07:45 (3.06)

16
31 01:24:40 (27.24) 18:19 (37.94) 06:24 (5.57) 03:26 (2.79)
61 01:12:33 (50.18) 46:34 (84.16) 07:12 (5.55) 04:23 (3.06)

Gorilla

1
31 05:44:10 (28.08) 01:34:29 (37.94) 01:00:15 (5.04) 31:46 (2.74)
61 05:31:06 (50.13) 02:11:33 (84.16) 01:11:29 (5.83) 38:15 (3.02)

8
31 02:06:52 (28.08) 28:52 (37.94) 13:02 (5.82) 05:30 (2.74)
61 01:24:21 (50.13) 47:45 (84.16) 10:03 (6.00) 07:58 (3.02)

16
31 01:50:26 (28.08) 20:47 (37.94) 07:29 (5.52) 03:13 (2.74)
61 01:10:06 (50.13) 38:45 (84.16) 06:24 (6.09) 04:29 (3.02)

Sugar
pine

16
31

22:18:24
(229.17)

09:29:24
(145.23)

01:49:01
(61.93)

51:30
(14.24)

61
X

(364.25)
X

(166.54)
01:26:39
(64.86)

03:14:44
(20.88)

Time- and memory-performance benchmarking for compacting single input reference de Bruijn

graphs. Running times are in wall clock format, and the maximum memory usages in

gigabytes. Note that, Bifrost and deGSM can also work with sequencing reads.

Results
Benchmarking comparisons

Dataset
Total genome-
length (bp)

Distinct
kmers count

Bifrost deGSM TwoPaCo Cuttlefish

62 E. Coli 310M 24M 1 (0.47) 1 (3.34) 1 (0.80) 1 (0.96)
7 Humans 21G 2.6B 95 (29.06) 30 (37.94) 62 (6.14) 21 (2.88)
7 Apes 18G 7.1B 294 (100.25) 172 (145.23) 59 (28.87) 25 (7.42)

11 Conifers 204G 82B – – 981 (288.99) 525 (84.12)
100 Humans 322G 28B – – X (64.88) 523 (28.75)

Time- and memory-performance benchmarking for compacting colored de Bruijn graphs (i.e.

multiple input references) for k = 31, using 16 threads. Running times are minutes, and the

maximum memory usages in gigabytes.

Results
Parallel scalability

Thread count

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

0

500

1000

1500

5 10 15 20 25 30

k-mer set construction MPHF construction States computation Unipaths extraction

Parallel scaling: timing

Time taken by each step.

Results
Parallel scalability

Thread count

S
pe

ed
up

0

5

10

15

20

25

5 10 15 20 25 30

k-mer set construction MPHF construction States computation Unipaths extraction

Parallel scaling: speedup

Speedup for each step.

Conclusion

- Pushing the boundary of the ability to construct (colored)
compacted dBGs, in terms of genome scale and count.

- Introduction of a novel modeling scheme of the dBG
vertices with a DFA.

- Potential further improvements in the role of the dBG in—
I comparative genomics, computational pan-genomics, and

sequence analysis pipelines;
I also facilitating novel biological studies — especially for

large-scale genome collections that may not have been
possible earlier.

- Implemented using C++14, available at
https://github.com/COMBINE-lab/cuttlefish.

https://github.com/COMBINE-lab/cuttlefish

Appendix I

A key observation to bypass building G(S, k) —
- A complete walk traversal w(s) over G(s, k) can be
obtained through a scan over s, without having G(s, k).

Figure: G(S, 3) for S = {CGACATGTCTTAG,GCTCTTAG}.

The string GCTCTTAG is spelled by the walk
(AGC,CTC,AGA,GAA, TAA,CTA).

Appendix II

Scaling with k

Build steps (s) Build Time
(s)

Build memory
(GB)

Output step (s) Output memory
(GB)

k
Distinct k-mers

count (B)
k-mer set

construction
MPHF

construction
States

computation
Unipaths

only
GFA2

23 2.39 154 62 762 978 2.67 744 1345 2.82
31 2.59 391 70 791 1252 2.88 737 1203 3.01
61 2.96 439 200 797 1436 3.25 798 831 3.37
91 3.12 1118 311 830 2259 3.42 806 860 3.49
121 3.24 1483 902 841 3226 3.55 850 820 3.62

Running times are in seconds, and the maximum memory usages are in gigabytes.

Appendix III

For genome counts varying from 1 to 7, the corresponding (a) running time (seconds), (b)

maximum memory usage (gigabytes), (c) total length of the genomes. and (d) number distinct

k-mers for each input collection.

	Introduction
	Preliminaries
	Algorithm
	Motivation
	Flanking vertices of the maximal unitigs
	A deterministic finite-state automaton model for vertices
	Hash table structure for the automata
	The Cuttlefish algorithm
	Asymptotics

	Results
	Dataset characteristics
	Benchmarking comparisons
	Parallel scalability

	Conclusion
	Appendix
	Appendix

