
Alignment-free detection
of copy number variations (CNVs)

using strongly unique k-mers
and fused lasso regularization

Till Hartmann1,2, Elias Kuthe2,3, Alicia Tüns2,4,
Alexander Schramm2,4, Jens Zentgraf2,3, Sven Rahmann1,2,3

(DSB online, 12-Feb-2021)

1 Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
2 Collaborative Research Center SFB 876, Dortmund/Essen, Germany

3 Bioinformatics, Computer Science XI, TU Dortmund University, Dortmund, Germany
4 Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center,

University Hospital Essen, University of Duisburg-Essen, Essen, Germany

copy number variations (CNVs)

● segmental duplications & amplifications
● segmental deletions & losses
● may change gene copy numbers
● may influence gene expression
● frequently happen in cancer cells

source: genome.gov

why alignment-free CNV calling?
● alignment-free approaches

more efficient than mapping-based
● avoids mapping bias
● k-mer count: direct CN estimate

if k-mer is unique in genome

GGCTCAGAACCCTGAATTCTAGTCTC
GCGCCCGGCCCTGGGTGGGGAGATAT
AGGTTAGAGATACTCAAGCTCCCCTT
TGTCCCTTTTCTGCGCCTCAAAGGGG
TGTGACATGAACAAAACCAAAACCTT
…

overview
● determine robust k-mer probes:

 strongly unique k-mer : unique in genome & no hamming distance 1 neighbours

1 1 1 1 0 0 0 0 1 1 1 0 0 0
…

● for each sample:
○ deduplicate raw reads (bloom filter)

○ count k-mers (any k-mer counter will do)

○ counts → copy number via k-mer count histogram
○ “measure” copy number signal on robust probes across reference
○ segment signal with fused lasso

● bit vector indicator of these probes in reference (aka “index”)

Part I:
choosing strongly unique k-mer probes

hashing genomic k-mers
● Hash and count genomic k-mers (up to 2)
● Use 3-way bucketed Cuckoo hashing *
● 3 hash functions, each maps a k-mer to a bucket
● each bucket can store up to 4 elements

(such that a bucket fits within a cache line)
→ 12 possible locations for each element

● at worst 3 memory lookups (cache misses),
often only 1 or 2, depends on load factor

● use quotienting* for saving space
(only part of the key needs to be stored)

* as featured in: “Fast lightweight accurate xenograft sorting”, Jens Zentgraf & Sven Rahmann, WABI 2020
(with an extended version being under review at Algorithms in Molecular Biology)

marking weak vs. strong k-mers
● determine robust probes:

 strongly unique k-mer : unique & has no hamming distance 1 neighbours

● naïve: for each k-mer, look up each of its 3·k neighbours,
mark those with any neighbour as weak (remainder as strong)

● better:
○ sort list of k-mers and their reverse complements
○ partition into blocks by k-mer prefix of length k/2
○ for each block: test all suffix pairs for HD 1.
○ using fast bit-magic test for HD 1
○ blocks can be processed in parallel

weak

weak

weak

weak

strong

k-mer type distribution → pick k=27

build times (reference k-mer hash)
■ times in CPU minutes

(except wall: wall minutes)

■ insert time (serial) increases
with number of k-mers:
2.33 G (k=23) to 2.47 G (k=29)

■ marking time of weak k-mers
is dominant, but decreases
with k (smaller blocks)

■ parallelization over blocks
more effective for smaller k
(fewer, but larger blocks)

■ wall clock time constant ~65 min
■ genome: UCSC "analysis set"

gaps between strong vs. all unique k-mers

■ cumulative gap length distribution
for k = 27
(both axes logarithmic)

■ not counting invalid k-mers
(containing Ns)

■ very often k-mers directly
adjacent (gap 1)

■ only few long gaps ≥ 10k:
- strong 27-mers: 2665 gaps
- all unique 27-mers: 814 gaps

■ maximal gap lengths:
- strong 27-mers: 389,890
- all unique 27-mers: 362,527

■ caused by exact repeats,
also affects alignments !

Part II:
calling CNs in WGS samples
using strongly unique k-mers

sample processing: counting k-mers
● deduplicate paired end reads (large bloom filter with very low fpr)

● use k-mer counter of choice (kmc3)

GGCTCAGAACCCTGAATTCTAGTCTC
GCGCCCGGCCCTGGGTGGGGAGATAT
AGGTTAGAGATACTCAAGCTCCCCTT
TGTCCCTTTTCTGCGCCTCAAAGGGG
TGTGACATGAACAAAACCAAAACCTT
…

kmer count

AAAAC 1

AACTT 1

ACGAC 3

ACGAG 1

...

k-mer counts at strong positions

1 1 1 1 0 0 0 0 1 1 1 0 0 0
…

● bitvector of strong k-mers in reference

● iterate over reference sequence and bitvector

● for each strongly unique kmer: query sample k-mer count (kmc3 API)

kmer count

AAAAC 1

AACTT 1

ACGAC 3

ACGAG 1

...
position in reference

co
un

t
25

5

0 3e9

0

from counts to copy numbers
● find "normcount" corresponding to CN 2 (for diploid genomes)

from k-mer (log-)count histogram: then CN := 2 · count / normcount
○ fit quadratic polynomial locally around mode (low coverage)

○ fit negative binomial mixture model using EM (high coverage)

1

segmentation
fused lasso signal approximator (FLSA)

where
: weighting factors

: distance between (strongly
unique) k-mer i and i +1 in
the reference

: constant, iteratively adapted

segmentation
fused lasso signal approximator (FLSA)

where
: weighting factors

: distance between (strongly
unique) k-mer i and i +1 in
the reference

: constant, iteratively adapted

segmentation
fused lasso signal approximator (FLSA)

where
: weighting factors

: distance between (strongly
unique) k-mer i and i +1 in
the reference

: constant, iteratively adapted

exemplary results
● 2 ~5x coverage WGS samples:

○ Capan1 (Human Pancreatic Adenocarcinoma Cell Line (ATCC HTB-79))

○ Capan2 (Human Pancreatic Adenocarcinoma Cell Line (ATCC HTB-80))

● 1 ~35x coverage WGS sample (normal)

whole genome

1 222 3 4 5 6 7 8 9 10 11 12 13 14 15

chr1

16 17 18 19 20 21

C
ap

an
1

C
ap

an
2

no
rm

al

normal

amplification

reduction
loss

chromosome details

Capan1 Capan2

chromosome details - difference

summary
● what: from raw WGS reads to CNV calls
● how:

○ count strongly unique k-mers in sample ➝ copy number signal along genome
○ fused lasso for segmentation of signal

● why:
○ avoid read mapping & alignment:

save resources (energy, cpu hours, memory usage, storage space)
● work in progress:

○ include k-mers from known frequent variants
○ further speed-up of weak k-mer detection
○ count strongly unique k-mers only
○ optimize fused lasso parameters and evaluate on large datasets

appendix
(technical details)

reference genome
■ We use the non-redundant "analysis set" from

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/analysisSet/
hg38.analysisSet.fa.gz

■ note: there may be a problem with the X and Y chromosome, which share some
very homologous regions that may lead to non-unique (repeated) k-mers even
though we may not want to analyze Y at all.

■ note: they hard-masked (Ns) the so-called PAR regions in the analysis set.

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/analysisSet/hg38.analysisSet.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/analysisSet/hg38.analysisSet.fa.gz

memory for reference index
■ k-mer hashes need between

7.2 GB for 2.33 G k-mers (k=23) and 11.3 GB for 2.47 G k-mers (k=29)
(3.090 bytes / 23-mer to 4.575 bytes / 29-mer)
(exact representation, no probabilistic filter, efficient because of quotienting)

■ for CNV calling, we only need the bit vector (1 bit / reference position)
of size approx. 350 MB, independent of k

■ bit vector may even be compressed (allowing fast left-to-right access)
■ but we also need a huge k-mer counter of the sample…

(size depends on sequencing depth, easily over 16 GB)

