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MOTIVATION AND CONTRIBUTION

Long reads improve variant detection:

 SVs in repeated regions of the genome

 Hard to detect variations

Fig.3 from Pollard et al. Long reads: their purpose and place. Human molecular genetics (2018)
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MOTIVATION AND CONTRIBUTION

Long reads improve variant detection:

 SVs in repeated regions of the genome

 Hard to detect variations

Current approaches:

 Alignment-based (e.g., CuteSV) fails to detect complex SVs (inaccurate alignments)

 Alignment-free (e.g., MALVA, Nebula) are limited by kmer size (short reads)

Novel alignment-free framework for variant detection from HiFi long reads not limited by kmer size



SAMPLE-SPECIFIC STRINGS

Given two set of strings R and T, we define T-specific any string:

 occurring in T (substring)

 not occurring in R (substring)



COMPARING TWO INDIVIDUALS

Rationale: any variation specific to T should produce one (or more) T-specific string



PRELIMINARIES



PACBIO SINGLE MOLECULE HIGH-FIDELITY (HiFi reads)
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FMD-INDEX1

FM-Index of a bidirectional collection of DNA sequences:

R1R1R2R2…RnRn

Single index for both forward and reverse strands that allows efficient, O(1), queries:

 backward extensions

 forward extensions

Indeed, by backward extending pattern P with a, we also forward extend P with t .

1 Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics (2012)

( R is the reverse-and-complement of R )
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T-SPECIFIC STRINGS

Given (R,T), we define T-specific any string:

 occurring in T (substring)

 not occurring in R (substring)

 s.t. no other T-specific strings are contained in it

e.g., it’s the shortest (substring-free property)

AGA

AA

Substring-free

T-specific strings

ACATGAG

ACAAGAG

R = {

T = {

}

}

0 1 2 3 4 5 6

O(|T|2) T-specific strings

ACAAGAG

ACAAGA

CAAGAG

AAGAG

ACAAG

AAG

…



PROPERTY OF T-SPECIFIC STRINGS

Let t be a n-long T-specific string. By definition:

 t[0:n] isn’t found in R

 t[0:n-1] is found in R

 t[1:n] is found in R

The first and last base of t are mismatches.

t

✓



✓
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ALGORITHM: PING-PONG

Input: two sets of strings (T,R)

Output: T-specific strings w.r.t. R

1. Build the FMD-Index of R

2. For each string t in T:

1. Traverse backward the index until a mismatch

2. Traverse forward the index until a mismatch

3. Return the string between the mismatches (included)

4. Reiterate

Q1 to audience: is this notion related to the one of SMEMs?



COMPLEXITY

Property:
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COMPLEXITY

Property:

𝑆𝑇 = 𝑡∈𝑇ڂ 𝑆𝑡

Theorem:

Ping-Pong algorithm retrieves all T-specific strings in O(n2), where n is the total length of T.
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PING-PONG (RELAXED)

Theorem:

Relaxed Ping-Pong algorithm retrieves a subset of T-specific strings in O(n).

Instead of retrieving all t-specific strings, we can retrieve all strings “non-overlapping” on t.



EXPERIMENTAL EVALUATION



REAL HIFI EXPERIMENTS

1 Warren et al. ntEdit: scalable genome sequence polishing. Bioinformatics (2019)

2 Heng Li. Fast construction of  FM-index for long sequence reads. Bioinformatics (2014)
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REAL HIFI EXPERIMENTS

34 219 149 HG00733-specific strings (≥5 abundance)

( 7 125 436 relaxed)

ntEdit Indexing Retrieval Total/Peak

Time (hh:mm) 05:03 20:30 😕 11:59 37:32

RAM (GB) 36 25 242    😅 242

Q2 to audience: can we make indexing faster?
1 Warren et al. ntEdit: scalable genome sequence polishing. Bioinformatics (2019)

2 Heng Li. Fast construction of  FM-index for long sequence reads. Bioinformatics (2014)

1

1
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VALIDATION

1. Contigs-based: check if our algorithm is correct

2. Haplotype-based: check if HG00733-specific strings cover variations specific to 
HG00733 (w.r.t. NA19240)

Comparison: specific 31-mers and 101-mers (KMC)



VALIDATION USING CONTIGS

Goal: check if HG00733-specific strings are effectively specific (algorithm correctness)

How:

1. get the HG00733 and NA19240 contigs [Porubsky et al. Nat. Comm. 2020]

2. align specific strings/kmers to the contigs (bbmap2/bwa/minimap2)

3. evaluate alignment quality

Metric: C-Precision (fraction of strings aligned perfectly only to HG00733 contigs)
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Goal: check if HG00733-specific strings are effectively specific (algorithm correctness)

Metric: C-Precision (fraction of strings aligned perfectly only to HG00733 contigs)



VALIDATION USING HAPLOTYPES

Goal: check if HG00733-specific strings cover variations specific to HG00733

How:

1. get the known variations (VCF) [Porubsky et al. Nat. Comm. 2020]

2. build HG00733 haplotypes (BCFtools)

3. align specific strings/kmers to the haplotypes (bbmap2/bwa/minimap2)

4. Intersect alignments and specific variations (BEDtools)

Metric: Recall and H-Precision



VALIDATION USING HAPLOTYPES

Goal: check if HG00733-specific strings cover variations specific to HG00733

Metric: Recall and H-Precision



VALIDATION USING HAPLOTYPES

Conjecture: the considered VCF is partially incomplete
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CONCLUSIONS

Sample-specific strings and Ping-Pong search (FMD-Index based)

Take-home messages:

 Specific strings effectively cover variations (even better than specific kmers)

 They may replace kmers in some scenarios - thanks to their variable-length nature

Open questions:

 Is our notion of sample-specific strings related to the one of SMEMs?

 Can we make the indexing faster?

Future steps: variation discovery via sample-specific strings detection

https://github.com/Parsoa/PingPong

https://github.com/Parsoa/Stella


THANK YOU! Questions?



PSEUDOCODE



FULL RESULTS


