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1 In 2017 a new class of automata - the class of Wheeler automata -
was introduced 1.

2 Wheeler automata:
1 can be compactly stored;
2 allow to efficiently compute the set of states reachable from the initial

state.
3 capture most compression techniques based on the celebrated

Burrows-Wheeler transform.

1Travis Gagie, Giovanni Manzini, Jouni Sirén, Wheeler graphs: A framework for
BWT-based data structures, Theoretical Computer Science, Volume 698, 2017, Pages
67-78.

2 / 25



We start from an edge-labeled automaton
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The automaton is Wheeler if there exists a total order on the set of states
with the following properties:
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1) The initial state must come first.
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2) All states reached by edges labeled a come before all states reached by
edges labeled b, which come before all states reached by edges labeled c ,
and so on.
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3) If we consider two edges with the same label, the mutual order of the
start states is equal to the mutual order of the end states.
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In a Wheeler automaton, the strings recognized by state i are
co-lexicographically smaller than the strings recognized by state i + 1, up
to intersections.
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I1 = {ε}
I2 = {a}
I3 = {a, aa}
I4 = {ba, aba, aaba, bca, abca, aabca, . . . , acbbca, bcbbca, abcbbca,
aabcbbca, acbca, bcbca, abcbca, aabcbca, acca, bcca, abcca, aabcca}
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I5 = {b, ab, aab}
I6 = {. . . , acbb, bcbb, abcbb, aabcbb, acb, bcb, abcb, aabcb}
I7 = {ac, bc, abc, aabc}
I8 = {bc, abc, aabc, . . . , acbbc, bcbbc, abcbbc , aabcbbc , acbc, bcbc,
abcbc, aabcbc , acc , bcc, abcc, aabcc}
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1 The main limitation of Wheeler automata is that they capture only a
small subclass of regular languages.

2 For example, unary languages are Wheeler if and only if they are finite
or cofinite.

3 In the paper, we show how to generalize Wheeler automata to
arbitrary automata, and so to the whole class of regular languages.

4 In the remaining of this presentation, we describe some enjoyable
properties of Wheeler automata and we outline how they extend to
generic automata.
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Here is the standard definition of Wheeler order.

Definition

Let A = (Q,E ,Σ, s,F ) be an NFA. A Wheeler order of A is a total order
≤ on Q that satisfies the following two axioms:

1 (Axiom 1) For every u, v ∈ Q, if λ(u) ≺ λ(v), then u < v (in
particular, states with no incoming edges come before all remaining
states);

2 (Axiom 2) For all edges (u′, u), (v ′, v) ∈ E , if λ(u) = λ(v) and
u′ < v ′, then u ≤ v .

In the above definition λ(u) is the label of state u.

Only some automata admit a Wheeler order.
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In our paper, we give the definition of co-lexicographic order.

Definition

Let A = (Q,E ,Σ, s,F ) be an NFA. A Wheeler co-lexicographic order of A
is a total partial order ≤ on Q that satisfies the following two axioms:

1 (Axiom 1) For every u, v ∈ Q, if λ(u) ≺ λ(v), then u < v (in
particular, states with no incoming edges come before all remaining
states);

2 (Axiom 2) For all edges (u′, u), (v ′, v) ∈ E , if λ(u) = λ(v) and
u′ < v ′, then u ≤ v if λ(u) = λ(v) and u < v , then u′ ≤ v ′.

Every automaton admits a co-lexicographic order!
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Definition

Let A = (Q,E ,Σ, s,F ) be an NFA. A co-lexicographic order of A is a
partial order ≤ on Q that satisfies the following two axioms:

1 (Axiom 1) For every u, v ∈ Q, if λ(u) < λ(v), then u < v (in
particular, states with no incoming edges come before all remaining
states);

2 (Axiom 2) For all edges (u′, u), (v ′, v) ∈ E , if λ(u) = λ(v) and u < v ,
then u′ ≤ v ′.

Now the order can be partial (but, as we will see, the more is
”approximately total”, the better).

In Axiom 2, we have just considered the contrapositive statement
(which is not equivalent to the old statement if the order is not total).

The intuition is that co-lexicographic order compare strings by
comparing the last letter and possibly proceeding backward.
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1 This automaton does not admit a Wheeler order (or equivalently, a
total co-lexicographic order).

2 However, it can be shown that the partial order given by the Hasse
diagram is a co-lexicographic order.
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1 This total order admits a chain partition of cardinality equal to two
(for example {{0, 1, 3, 6}, {4, 2, 5}}).

2 By Dilworth theorem, two is also the cardinality of a largest antichain.

3 As a consequence, a measure of the complexity of an automaton is
the smallest p for which there exists a co-lexicographic order that
admits a chain partition of cardinality p.

4 An automaton is Wheeler if and only if p = 1 (the order must be
total).
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1 Our compression and indexing results depends on p, and the lower p,
the better (as one expects).

2 Every automaton has its own p, because every automaton admits a
trivial co-lexicographic order, namely:

≤ := {(u, u) ∈ Q × Q | u ∈ Q}∪
∪ {(u, v) ∈ Q × Q | λ(u) < λ(v)}.
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The key property of Wheeler automata is that if we start from consecutive
states and we read any string, we end up in consecutive states.
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Start from the range 2-3-4-5.
Let us read the letter ”c”.
We have reached the range 7-8.

18 / 25



The key property of Wheeler automata is that if we start from consecutive
states and we read any letter, we end up in consecutive states.

8 1start

2

3

45

6

7

a

a
a

a

a

b

b

b

b

c

c

c

c

c

Start from the range 2-3-4-5.
Let us read the letter ”c”.
We have reached the range 7-8.

19 / 25



1 The key property of Wheeler automata is that if we start from
consecutive states and we read any letter, we end up in consecutive
states.

2 By induction the same works if we read any string.
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In arbitrary automata, one finds out that everything works analogously, but
we must keep track of p intervals.
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Wheeler automata

Compact representation of
Wheeler automata

Burrows Wheeler transform of
Wheeler automata

Return the states
reached from initial state

by reading α ∈ Σm

in O(m log(|Σ|)) time

Determining whether
an NFA is Wheeler

is NP-complete

Determining whether
a DFA is Wheeler

is linear

Arbitrary automata

Compact representation of
arbitrary automata

Burrows Wheeler transform of
arbitrary automata

Return the states
reached from initial state

by reading α ∈ Σm

in O(mp2 log(p|Σ|)) time

Determining p
for an NFA
is NP-hard

Determining p
for a DFA

is polynomial
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Wheeler automata

The powerset construction
transform an NFA

with n states
into a DFA

with ≤ 2n − 1 states

Arbitrary automata

The powerset construction
transform an NFA

with n states
into a DFA

with ≤ 2p(n − p + 1)− 1 states

1 The powerset construction turns out to be exponential in p, not in n.

2 Problems that are difficult on NFAs but easy on DFAs are
fixed-parameter tractable with respect to p.

3 For example, one can check the equivalence between two NFAs by
simply transforming them into DFAs and then checking the
equivalence of the resulting DFAs. This yields an algorithm
exponential in p (not in n) for a P-SPACE complete problem.
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Future research:

1 Studying the hierarchy of regular languages induced by
co-lexicographic orders. What role does p play?

2 Determining the relationship between intersection, union, ... of
regular languages and p.

3 Extending more indexing techniques to arbitrary automata
(tunneling...)

4 Describing more well-known problems being fixed-parameter tractable
with respect to p.
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