Efficient Construction of
Hierarchical Overlap Graphs

Sung Gwan Park

Seoul National University, Korea
Bastien Cazaux

LIRMM, Univ Montpellier, CNRS, France
Kunsoo Park

Seoul National University, Korea

Eric Rivals

LIRMM, Univ Montpellier, CNRS, France

“E Seoul National University

Fl

53
e }
g
W "
W
e
-1
f-!

""’x

)
E ¥ College of Engineering
~ {LQ\ Dept. of Computer Science and Engineering

Ly
"fa:i

Outline

Introduction
Preliminaries
Main algorithm

Improvement using segment tree

Introduction

* (Genome sequencing

— DNA assembly: Obtaining a whole genome sequence
from sequencing reads

— Seeking some path in a graph that encodes suffix-
prefix overlaps

* Overlap encoding graphs
— Overlap graph
— De Bruijn graph

Introduction

* (Genome sequencing

— DNA assembly: Obtaining a whole genome sequence
from sequencing reads

— Seeking some path in a graph that encodes suffix-
prefix overlaps

* Overlap encoding graphs AACGTA
— Overlap graph
— De Bruijn graph 3 4

GTACAA [| CAACG

Shortest Superstring problem

e Shortest Superstring problem
* Let P be a set of input strings.
* Find the shortest string that contains all input strings as substring.

* Equivalent to finding a maximum weighted Hamiltonian path in the
overlap graph.

« Example P :={ AACGTA, GTACAA, CAACG }

CAACGTACAA aacOlls
CAACG .
AACGTA 2 g)
GTACAA
3
GTACAA [| CAACG

Shortest Superstring problem

e Shortest Superstring problem
* Let P be a set of input strings.
* Find the shortest string that contains all input strings as substring.

* Equivalent to finding a maximum weighted Hamiltonian path in the
overlap graph.

« Example P :={ AACGTA, GTACAA, CAACG }

CAACGTACAA aacOlls
CAACG .
AACGTA 2 .)
GTACAA
3
GTACAA [| CAACG

Shortest Superstring problem

e Shortest Superstring problem
* Let P be a set of input strings.
* Find the shortest string that contains all input strings as substring.

* Equivalent to finding a maximum weighted Hamiltonian path in the
overlap graph.

« Example P :={ AACGTA, GTACAA, CAACG }

CAACGTACAA aacOlls
CAACG .
AACGTA 2 .)
GTACAA
3
GTACAA [| CAACG

Hierarchical Overlap Graph (HOG)

» Hierarchical overlap graph (HOG)
— First proposed by Cazaux and Rivals
— Given a set of strings,

* Nodes: Maximal overlaps
between strings

» Arcs: Prefix or suffix relations
between nodes

— We can divide arcs into tree edges
(prefix relations) and failure links
(suffix relations).

« Example
- S ={aabaa, aacd, cdb} aabaa

Hierarchical Overlap Graph (HOG)

» Extended HOG (EHOG) S
— First proposed by Cazaux and Rivals .
— Given a set of strings, a/; . \

* Nodes: (Possibly not maximal) . .
Overlaps between strings

* Arcs: Prefix or suffix relations
between nodes a

aad /
« Example @ N
- S ={aabaa, aacd, cdb} baa/, cd cdb

« EHOG may use considerably 1
more space than HOG.

Hierarchical Overlap Graph (HOG)

» Extended HOG (EHOG)

— First proposed by Cazaux and Rivals

— Given a set of strings,

* Nodes: (Possibly not maximal)
Overlaps between strings

» Arcs: Prefix or suffix relations
between nodes

« Example
- S ={aabaa, aacd, cdb} baa/

« EHOG may use considerably 1
more space than HOG.

Hierarchical Overlap Graph (HOG)

There are many advantages of HOG.

||P|| denotes the sum of lengths of strings in P

HOG uses less space than overlap graph.
— Overlap graph: O(||P|| + n?)
— HOG: o(||PID

HOG has more information than the overlap graph.
— HOG encodes a relationship between the overlaps.
e.g. All identical overlaps are encoded into a unique node in HOG.

HOG has a great potential in studying the shortest
superstring problem.

HOG: construction

« EHOG can be constructed in O(]|P|]) time and space.
(Cazaux B. and Rivals E., 2020)

« HOG uses more time and space.
— Time: O(||P]| + n?)
— Space: O(]|P]|| + n X min(n, max{|s|:s € P)}))

 We present an algorithm using less time and space.
: : logn
— Time: O(||P]||logn) or O(||P]| lOgmgn)
— Space: 0(||PI])

Preliminaries

Given a set of strings P = {s4, Sy, ..., Sp},
- Ov™(P): Set of all overlaps from s; to s; for1 < i,j <n
- Ov(P): Set of the longest overlap from s; to s;

forl1 <i,j<n

In order to compute HOG, we need to compute Ov(P).

If we have Ov(P) and EHOG (P), we can compute HOG(P)
in 0(||P||) time. (Cazaux B. and Rivals E., 2020)

EHOG is a contracted form
of an Aho-Corasick trie.

HOG is a contracted form
of an EHOG.

Example
- S = {aabaa, aacd, cdb}

/ AC trie

EHOG is a contracted form
of an Aho-Corasick trie.

HOG is a contracted form
of an EHOG.

Example
- S ={aabaa, aacd, cdb}

AC trie

Preliminaries

EHOG is a contracted form
of an Aho-Corasick trie.

HOG is a contracted form
of an EHOG.

Example
- S ={aabaa, aacd, cdb}

EHOG

Preliminaries

EHOG is a contracted form
of an Aho-Corasick trie.

HOG is a contracted form
of an EHOG.

Example
- S ={aabaa, aacd, cdb}

EHOG

Preliminaries

EHOG is a contracted form
of an Aho-Corasick trie.

HOG is a contracted form
of an EHOG.

Example
- S ={aabaa, aacd, cdb}

HOG

Main Algorithm

Build an Aho-Corasick trie of P

Renumber the strings in lexicographic order @]
Build EHOG(P) in O(||P]|) time 3/ N\ed
For each node u in EHOG(P),
define an interval I (u) that contains
every leaf node in the subtree of u. |
OV AE
Example: I(u,) = {1, 2, 3} baa ,/’4 cd
I(uy) = {1,2)

I(us) = {3} 1

Main Algorithm

Build an Aho-Corasick trie of P
Renumber the strings in lexicographic order

Build EHOG(P) in 0(||P]|) time

For each node u in EHOG(P),
define an interval I (u) that contains
every leaf node in the subtree of u.

Example: I(u,) = {1, 2,3}
I(up) = {1, 2}
I(us) = {3}

Main Algorithm

Build an Aho-Corasick trie of P
Renumber the strings in lexicographic order

Build EHOG(P) in 0(||P]|) time

For each node u in EHOG(P),
define an interval I (u) that contains
every leaf node in the subtree of u.

Example: I(u,) = {1, 2, 3}
I(uy) = {1,2}
I(us) = {3}

Main Algorithm

Build an Aho-Corasick trie of P
Renumber the strings in lexicographic order

Build EHOG(P) in 0(||P]|) time

For each node u in EHOG(P), (u,)
define an interval I (u) that contains
every leaf node in the subtree of u.

Example: I(u,) = {1, 2,3} baa /"
I(uz) = 1{1,2}
I(us) = {3} 1

Main Algorithm

* We will compute Ov(P) from EHOG (P).

 What happens if u € Ov(P)?
- Forsome s;,s; € P, uis the longest overlap from s; to s;.

— u is a proper suffix of s;.
- u is a proper prefix of s;.
— There are no longer overlaps from s; to s; than u.

Main Algorithm

* |f we follow the failure link from s;, we get every suffixes
of s; in a decreasing order of lengths.

 |f we have a failure link chain vy = s;, v¢, V9, ..., vy = root,
v, is the longest overlap from s; to s; if v, is the first

node that is a prefix of s; during the traversal.

* In other words, v, is the longest overlap from s; to s; if:
- vy is a prefix of s;
- vy is nota prefixof s; for1 <y <x

Main Algorithm

Maintain a bit vector B of length n.

At the end of iteration with v,, B[j] = true if and only if
there exists 1 < y < x such that v, is a prefix of s;.

We can check whether v, should be included in HOG (P)
using B.

Main Algorithm

« Westartwithi = 1,s; = aabaa.
* |nitialize B with false.

* Follow the failure link repeatedly.

j 1 2 3
B[j] false false false 1

Main Algorithm

We start withi = 1,s; = aabaa.
Initialize B with false.

Follow the failure link repeatedly.

v1 = Uyl [(uy) = {1,2} @

j 1 2
B(j] false false

3
false 1

Main Algorithm

We start withi = 1,s; = aabaa.
Initialize B with false. @

a/
Follow the failure link repeatedly.
vy =uyl I(uy) = {1,2}
B[1] = B[2] = false: u, is the longest al
overlap from s, to s; and s,. |
baa/ cd |
j 1 2 3 /’/ /I

B[j] false false false 1

Main Algorithm

We start withi = 1,s; = aabaa.

Initialize B with false. v
Follow the failure link repeatedly.
V1 = Uy. I(U,4) = {1,2} a i

Update B[1] and B[2] as true.

J 1 2 3 /
B[] true true false 1

Main Algorithm

We start withi = 1,s; = aabaa.
Initialize B with false.

Follow the failure link repeatedly.
Vy = Uy. I(Uz) = {1,2}
B[1] and B[2] are already true: u,

is an overlap from s; to s; and s,
but not the longest one.

j 1 2 3
B(j] true true false

Main Algorithm

We start withi = 1,s; = aabaa.
Initialize B with false. @

a/
Follow the failure link repeatedly.
vs = up 1(uy) = (1,23}
B[3] = false: u; is the longest a
overlap from s; to s3. |
Update B[3] as true.
baa/.’ cd |
j 1 2 3

B[j] true true true 1

Main Algorithm

We start withi = 1,s; = aabaa.
Initialize B with false. @

a/)/
We do the same procedure
starting with s, = aacd and
S3 = cdb. . i
0v(P) = {uq, Uy, us}
baa/.’ cd

Main Algorithm (summary)

For each s;, do the following algorithm separately.

Initialize B[1..n] to false

Starting from node s;, follow the failure links while doing
the following works:

1) If there exists j € I(u) such that B[j] = false, mark u to
be included in Ov(P).

i) For j € I(u), update B[j] as true.

Build a HOG with marked nodes and EHOG.

Improvement using segment tree

 We need to process these two types of queries on B:

1) If there exists j € I(u) such that BJj] = false, mark u to
be included in Ov(P).

ii) For j € I(u), update BJj] as true.

« Consider an integer array A and following queries on A.

i) Given an interval [a.. b], compute the minimum value
among Ala..b] (and check whether it is zero or not)

ii) Given an interval [a.. b], add 1 to each element of
Ala..b].

e Alj] =0 & B[j] = false, Alj] > 0 & BJ[j] = true

Improvement using segment tree

 We use segment tree to process queries on A.

« Segment tree: A binary tree which has n leaf nodes and
has O(logn) height.

« Each internal node u corresponds to an interval u. int

A[1..6]

A[1..3]

A[4..6]

A[1..2]

A[1..1]

A[3..3]

A[4..5]

A[2..2]

Al4..4]

A[6..6]

A[5..5]

Improvement using segment tree

 Each node stores two values, min and add.
- uw.min . Minimum value among the elements in u. int

- u.add : Collectively added value to the elements in
u.int

(0, 0)

(min, add)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

Improvement using segment tree

We use lazy propagation technique.

If query 1 occurs, we follow the nodes recursively from
top to down, starting from the root.

Considering a node u, we split the cases

u. int is included in the query interval: return u. min
u. int Is disjoint with the query interval: return oo
Otherwise:

— Propagate u.add to child nodes

— Continue with child nodes, and return minimum
among them.

Improvement using segment tree

* Example: Query 2 on A[1..5]
— Update two nodes, representing A[1..3] and A[4..5]
— Thelir children are not updated yet

(0, 0)

(min, add)

(1,1)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(1, 1)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

Improvement using segment tree

« Example: Query 1 on A[3..4]
— We get min from two nodes, A[3..3] and A[4..4]

- add value of parent nodes are propagated to their
child nodes, ensuring the appropriate min values.

(0, 0)
(min, add)
(1, 0) (0, 0)
(1, 1) (1, 1) (1, 0) (0, 0)
(0, 0) (0, 0) (1, 1) (1, 1)
< >

Improvement using segment tree

Any interval [a..b] can be represented by O(logn) nodes
In the segment tree.

Both queries can be done in O(logn) time.
The total number of queries are 0(||P||).

Time complexity: O(||P||logn)

Both HOG and segment tree costs O(||P]|) space.
Space complexity: 0(||P[|)

Conclusion

« We have presented a new algorithm to compute HOG in
0(|IP||1ogn) time and O(||P||) space, using segment tree.

* We improved the time complexity of our algorithm to

logn :
0 (\IPI\ = logn) , using word RAM model / w-segment tree.

Open guestions :
e can one get a linear time algorithm?
e can one extend the data structure to encode approximate

overlaps?

Thanks for your attention

Bastien Cazaux
™y Sung Gwan Park

Eric Rivals

NP (o

NUMEV

institute of Information & Communications
Technology Planning & Evaluation

Paper: SPIRE, LNCS, 12303, doi: 10.1007/978-3-030-59212-7_20

Funding:

Outline

Introduction

Preliminaries

Main algorithm

Improvement using segment tree
Improvement using word RAM model

Improvement using word RAM

« Word RAM model: can read/write/do a bitwise operation
for w-bit machine words in 0(1) time. (w = logn)

* By using bitwise operations, we can improve the running

time of two queries from 0 (logn) to 0 (lolgolgo’;n).

* We use the w-segment tree, which is the w-ary version
of the segment tree.

Improvement using word RAM

« Word RAM model: can read/write/do a bitwise operation
for w-bit machine words in 0(1) time. (w = logn)

* By using bitwise operations, we can improve the running

time of two queries from 0 (logn) to 0 (lolgolgo’;n).

* We use the w-segment tree, which is the w-ary version
of the segment tree.

Improvement using word RAM

Instead of u.min and u. add, we store two bit vectors of
length w, u.Vmin and u.Vadd.

If a node u is the j-th child of its parent p, p. Vmin[j] is
true if and only if u.min = 0.

We can update the w-segment tree similarly to the (binary)

segment tree, but in 0(log,, n) = 0 (lglgolgo’;n) time.

We can simulate w-segment tree using arrays, which
results in using 0(n) bits in total.

Pointers

Lazy Propagation in Segment Tree

https://www.geeksforgeeks.org/lazy-propagation-in-segment-tree/

	Diapo 1
	Outline
	Introduction
	Introduction
	Diapo 5
	Diapo 6
	Diapo 7
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Preliminaries
	Preliminaries
	Preliminaries
	Preliminaries
	Preliminaries
	Preliminaries
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm
	Main Algorithm_clipboard0
	Main Algorithm
	Improvement using segment tree
	Improvement using segment tree_clipboard0
	Improvement using segment tree
	Improvement using segment tree
	Improvement using segment tree
	Improvement using segment tree
	Improvement using segment tree
	Conclusion
	Diapo 42
	Diapo 43
	Improvement using word RAM_clipboard0
	Improvement using word RAM_clipboard1
	Improvement using word RAM
	Diapo 47

