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Many problems in bioinformatics can be seen as puzzles



Genome Assembly

Reconstruct a genomic sequence based on reads obtained from it.



Multi-Assembly

Reconstruct multiple sequences based on mixed-reads obtained
from all of them.



Puzzles solved perfectly



Unsolvable puzzles (multiple solutions)



Puzzles with multiple solutions



Safe parts common to all possible solutions



Contigs in Genome Assembly
Genomic fragments promised to occur in the original genome.

I Used and reported by practical assemblers [10, 11, 17, 20].

I Developed theoretically [24, 6, 7, 5].
I Completeness

Not used in multi-assembly!
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Model for Multi-assembly

Path cover in a DAG
G = (V ,E )

I Set of paths P such that every vertex of the graph appears in
some path.

I Directed acyclic graph.

I E.g.:
I RNA transcript assembly

[25, 21, 3, 13, 9, 16, 19, 4, 12, 23, 22, 14].
I Viral quasi-species assembly [8, 27, 2, 1]
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Model for Multi-assembly

Two types of path covers

I Minimum path cover (MPC).
I Of size k, known as the width.
I One can be computed in time O(|V ||E |) [18].

I Generalized path cover.
I Of size ≤ ` (parameter).
I Paths starting at S ⊆ V (parameter).
I Paths ending at T ⊆ V (parameter).
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Our results



Theoretical results

Minimum path covers Generalized path covers

Safe edges O(k |V ||E |) O(k|V ||E |)

Maximal safe paths O(k2|V ||E |) O(max(1, 2k − `)k |V ||E |)

Recall k is the width of the graph (size of an MPC)



Theoretical results

Minimum path covers Generalized path covers

Safe edges O(k |V ||E |) O(k|V ||E |)

Maximal safe paths O(k2|V ||E |) O(max(1, 2k − `)k |V ||E |)

Recall k is the width of the graph (size of an MPC)



Practical results

Apply to RNA transcript assembly defining RNA contigs.

Proof-of-concept study

I Splicing graphs from human annotated transcripts.

I Double length compared to unitigs.

I Transcript coverage of 80%.

I Less than 15 seconds (all transcript annotation from Ensembl
database [26]).
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Theoretical results
(MPC only)



General Approach (Avoid-and-test)

1. Compute a solution to the problem → An MPC P.

I In O(|V ||E |) [18].

2. For each subpart → Every subpath P of a path of P.

I Test if P is safe → Compute the width of GP .
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Safe edges



Theorem (Safe edges MPC)

An edge e is safe if and only if width(G ) < width(G \ e).

I Naive algorithm: O(k|V |2|E |).

I But, we can do better.
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Shrinking Primitive

Lemma (Shrinking [15])

Given a path cover P = P1, . . . ,Pt of G, we can obtain a MPC of
G in time O(|E |(t − k + 1))



Theorem (Safe edges MPC)

An edge e is safe if and only if width(G ) < width(G \ e).

I Naive algorithm: O(k|V |2|E |).

I But, we can do better.

I O(
∑

e∈P µe |E |) = O(k |V ||E |)



Maximal safe paths



Path Reduction

Definition
Given a path P = x1, . . . , xp of G , we define GP = (V ,EP), where

EP = (E \ {(xp−1, xp)}) ∪
p⋃

i=2

{
(u, xp) | u ∈ N−(xi ) \ {xi−1}

}
.

x1 x2 xp−1 xp x1 x2 xp−1 xp

⟹G
P

P = ⋯ ⋯
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Theorem (Maximal safe paths MPC)

Let P = x1, . . . , xp be a path of G, such that x1, . . . , xp−1 is a safe
path. It holds that P is safe if and only if width(G ) < width(GP).

I Paths of increasing size algorithm: O(k |V |3|E |).

I By using shrinking, and two-finger on each path: O(k2|V ||E |).
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Practical results
(RNA contigs)



Central dogma of molecular biology



RNA transcript assembly



RNA transcript assembly



RNA transcript assembly



RNA transcript assembly



RNA contigs

RNA contigs = Maximal safe paths for generalized path cover



Experimental setup

I Human gene annotation (Ensembl [26],GRCh38.p13).
I All transcripts in chromosomes 1 to 22, on the forward strand.

I Build splicing graph.
I Perfect scenario.
I Known answers.

I ` ∈ {k , k + 1, . . . , 2k}.

I Baseline comparison with ST -unitigs.



Results
(less than 15 seconds to run)



Results

small graphs (3-21 vertices) medium graphs (22-52 vertices) large graphs (53-725 vertices)
` prec mcr prec mcr prec mcr

k
0.84
1.00

0.82
0.86

0.81
0.92

0.64
0.62

0.84
0.89

0.56
0.53

k + 1
1.00
1.00

0.79
0.83

0.99
1.00

0.61
0.59

0.99
1.00

0.53
0.50

t
1.00
1.00

0.79
0.83

1.00
1.00

0.61
0.59

1.00
1.00

0.53
0.50

2k
1.00
1.00

0.79
0.83

1.00
1.00

0.61
0.59

1.00
1.00

0.53
0.50

ST -
unitigs

1.00
1.00

0.64
0.67

1.00
1.00

0.49
0.47

1.00
1.00

0.42
0.39

Precision and Relative Maximum Coverage (of transcripts) for
RNA contigs and ST -unitigs.



Results

` small graphs (3-21 vertices) medium graphs (22-52 vertices) large graphs (53-725 vertices)

k 2.65× 3.54× 3.50×
k + 1 1.43× 1.83× 1.97×
t 1.42× 1.82× 1.94×

2k 1.42× 1.82× 1.94×

Relative length of longest RNA contig containing a ST -unitig.



Conclusions



Conclusions

I Efficient algorithms obtaining all maximal safe paths for
generalized path covers.

I Proof-of-concept RNA contigs on human annotated
transcripts.
I Publicly available code, datasets, and manipulation scripts.
I https://github.com/elarielcl/SafePathsRNAPC

I Future developments of safe paths
I Output of transcript assemblers.
I Use as preprocessing step.
I Validate transcript assemblies.
I Apply to other multi-assembly problem.

https://github.com/elarielcl/SafePathsRNAPC
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Massimo Cairo, Kristoffer Sahlin, Alexandru I. Tomescu

11.02.2021, DSB



14 95 19 45 44 79 118 70 109 219 153 216 444 180 127 205 171

108

14 3

14 95 19 45 44 79 118 70 109 219 153 216 444 180 127 205 171

108

14 3

T1

T2

T3

T4

U1 U2 U3
C1

C2
C3

C4

U4

C4

U3

U4

U2U1
T4

C2
C3

C1



References I

Baaijens, J. A., der Roest, B. V., Köster, J.,
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