
Shark 🦈
Fishing in a sample to discard irrelevant
RNA-Seq reads

Paola Bonizzoni, Tamara Ceccato, Gianluca Della Vedova,
Luca Denti, Yuri Pirola, Marco Previtali and Raffaella Rizzi

DISCo - Univ. degli Studi di Milano-Bicocca

DSB 2020 / Rennes / Feb. 4+5, 2020

The problem

Sequencing technologies produce a lot of data

Sequencing datasets are piling up in public

repositories

What if I want to analyze only a subset of genes (RNA-

Seq studies)?

Notice: aligning RNA-Seq reads to the genome is not

an easy task!

2

Outline

The Gene Assignment Problem

The Algorithm

Experimental results:

Synthetic dataset

Reproduction of real-world analyses

3

The Gene Assignment Problem

Given:

 a set of RNA-Seq reads

 a set of genes (genomic sequences)

two parameters and

Compute s.t. for each :

the set of bases of "covered" by at least a -mer shared with has

cardinality at least

such a cardinality is maximum (w.r.t. other).

S

G

k ∈ N
+ τ ∈ [0, 1]

{S1, … , S|G|} s ∈ Si ⊆ S

s k gi

τ ⋅ |s|

gj ∈ G

4

The Gene Assignment Problem - Goals

We want to be:

alignment-free (reduce potential alignment biases)

highly sensitive (almost no reads are lost)

as speci�c as possible (the dataset is reduced as much

as possible)

very fast

use a modest amount of memory

5

The algorithm

High-level idea:

1. Index the -mers of gene sequences in

2. Assign each read to its set of genes (if any)

k G

s ∈ S

6

The algorithm - Indexing genes

Index :

a Bloom �lter storing -mers of

(with a single hash function)

an integer vector storing indices of genes

associated to each -mer

a bit-vector providing a mapping between

and by "tagging" the boundaries among the

different subsets of genes in

⟨BF, I, P⟩

BF k G

H

I

k

P BF

I

I

7

The algorithm - Indexing genes

8

The algorithm - Indexing genes

9

The algorithm - How to build the index?

1. Scan each -mer of the gene sequences in and

store them in (using a single hash function)

2. Associate an empty list to each 1 in

3. Re-scan each -mer of each and add to the

list associated to the 1 at position in

4. Copy (preserving the order) all the lists into while

tagging the boundaries between lists with a 1 in

k G

BF H

Lv BF

k e gi ∈ G i

Lv H(e) BF

Lv I

P

10

The algorithm - Assigning reads

To assign each read

1. For each -mer :

1. Query the index to �nd the genes containing

(FP are possible due to)

2. For each gene, compute how many bases are

covered by but not by previous -mers

2. Output the IDs of genes that cover the largest number

of bases of if bases

s ∈ S

k e ∈ s

e

BF

e k

s ≥ τ ⋅ |s|

11

Implementation

Shark is available at

https://github.com/AlgoLab/shark

Binaries through Bioconda
conda config ��add channels bioconda

conda install shark

Libraries:

sdsl�lite for DS

Intel TBB for multi-threading

12

https://github.com/AlgoLab/shark

Does it work?

13

Experimental results

How and affect sensitivity and speci�city?

→ synthetic datasets

Is Shark useful?

Does it change the results?

Does it make analyses faster and/or less memory

hungry?

→ replication of "real-world" analyses

k τ

14

Synthetic datasets - Data

Input data:

RNA-Seq sample of 10M 100bp-long reads on chr1, 17, 21

-mers covering bases with PHRED quality score have been

discarded, with (means no �lter)

10 different instances selecting random subsets of 100 genes each

Accuracy measures:

k ∈ {13, 17, 23, 27, 31}

τ ∈ {0.2, 0.4, 0.6, 0.8}

k < q

q ∈ {0, 10, 20} q = 0

Recall = TP/(TP + FN)

Precision = TP/(TP + FP)

15

Synthetic datasets - Results

16

Synthetic datasets - Results

Good compromise: → .k = 17, τ = 0.6, q = 10 R = 99.46%,P = 28.8%

17

Synthetic datasets - Results

Memory usage was always below 2.1GB

18

Replication of real-world analyses

19

Replication of real-world analyses

Aim: Differential analysis of AS events

Input data:

6 PE RNA-Seq samples (~180M 101bp-long reads)

82 distinct genes with 83 exp. validated exon skipping events

Pipelines:

SplAdder

rMATS

SUPPA2

20

Replication - Transcript quanti�cation

21

Replication - Diff. expressed events

Pipeline
Validated events

Time [min] Memory [GB]
All p-value < 0.05

rMATS 78 63 308 33.9

Shark + rMATS 78 63 142 33.9

SplAdder 56 NA 796 33.9

Shark + SplAdder 56 NA 295 33.9

SUPPA2 66 37 65 4.3

Shark + SUPPA2 66 43 34 4.4

Thanks to Shark we can also decrease the max memory consumption to less
than 16GB w/o affecting running times (data not shown).

22

Speeding-up assembly-�rst analyses

23

Speeding-up assembly-�rst analyses

Preliminary results:

Almost no changes in stat. signif. results

Signi�cant speed-up (from ~25h to ~3h)

Signi�cantly less memory (from ~12.5GB to ~5.5GB)

Ongoing work:

Manual inspection of results

24

Conclusions

Shark speeds up analyses by focusing on reads likely sequenced from

genes of interest

Highly sensitive (almost no reads are lost)

Good precision (dataset is substantially reduced)

For more details → preprint on

Ongoing work:

Algorithmic solution is simple (but effective).

Can we do better?

Clearly not suitable for all kind of analyses (i.e., transcriptome-wide

analyses).

But, if we want to focus on speci�c genes, do results change?

25

Thanks!

26

27

Synthetic datasets - Results

28

