Shark <>

Fishing in a sample to discard irrelevant
RNA-Seq reads

Paola Bonizzoni, Tamara Ceccato, Gianluca Della Vedova,
Luca Denti, Yuri Pirola, Marco Previtali and Raffaella Rizzi

DISCo - Univ. degli Studi di Milano-Bicocca

DSB 2020 / Rennes /| Feb. 4+5, 2020

The problem

Sequencing technologies produce a lot of data

Sequencing datasets are piling up in public

repositories

What if | want to analyze only a subset of genes (RNA-

Seq studies)?

Notice: aligning RNA-Seq reads to the genome is not

an easy task!

e The Gene Assignment Problem
e The Algorithm
e Experimental results:

o Synthetic dataset

o Reproduction of real-world analyses

The Gene Assignment Problem

Given:

« S a set of RNA-Seq reads
o (7 a set of genes (genomic sequences)
. two parameters k € N* and 7 € [0, 1]

Compute {51, ...,S|g|} st foreachs € §; C S

o the set of bases of s "covered" by at least a k-mer shared with g; has
cardinality at least T - |s|

e such a cardinality is maximum (w.rt. other g; € G).

The Gene Assignment Problem - Goals

We want to be:

o alignment-free (reduce potential alisnment biases)
e highly sensitive (almost no reads are lost)

e as specific as possible (the dataset is reduced as much

as possible)
e very fast

e Use a modest amount of memory

The algorithm

High-level idea:
1. Index the k-mers of gene sequences in G

2. Assign each read s € S to its set of genes (if any)

The algorithm - Indexing genes

Index (BF', I, P):

e a Bloom filter BF storing k-mers of G
(with a single hash function H)

e an integer vector I storing indices of genes
associated to each k-mer

e a bit-vector P providing a mapping between BF
and I by "tagging" the boundaries among the

different subsets of genes in I

The algorithm - Indexing genes

gacttg
k-mer T
lh = H(e)
BF 1 1 1 1 1
P 111 1 1 1
— Y
I

——— GENES(e) ———

The algorithm - Indexing genes

gacttg
k-mer T

lh = H(e)

BF 1 1 1 1 1
v = rankj (BF, h)
p1 = selecty (P, v /\p2 — selecty (P, v)

P 111 1 1 1
— !
I

——— GENES(e) ———

The algorithm - How to build the index?

1. Scan each k-mer of the gene sequences in G and

store them in BF' (using a single hash function H)
2. Associate an empty list L, to each 1 in BF

3. Re-scan each k-mer e of each g; € G and add 7 to the
list L, associated to the 1 at position H(e) in BF

4. Copy (preserving the order) all the lists L, into I while

tagging the boundaries between lists with a 1 in P

10

The algorithm - Assigning reads

To assign each read s € S

1. For each k-mer e € s:
1. Query the index to find the genes containing e
(FP are possible due to BF)

2. For each gene, compute how many bases are

covered by e but not by previous k-mers

2. Output the IDs of genes that cover the largest number

of bases of s if > 7 - |s| bases

1

Implementation

e Shark IS avallable at
https://github.com/AlgoLab/shark

e Binaries through Bioconda
conda config --add channels bioconda

conda 1nstall shark

e |ibraries:

o sdsl-lite for DS

o |ntel TBB for multi-threading

12

https://github.com/AlgoLab/shark

Does it work?

13

Experimental results

« How k and 7 affect sensitivity and specificity?
- synthetic datasets
e |s Shark useful?
o Does It change the results?
o Does it make analyses faster and/or less memory
hungry?

- replication of "real-world" analyses

14

Synthetic datasets - Data

Input data:

e RNA-Seq sample of 10M 100bp-long reads on chr1, 17, 21

ke {13,17,23,27,31}

T € {0.2,0.4,0.6,0.8}

k-mers covering bases with PHRED quality score < g have been
discarded, with g € {0, 10,20} (¢ = 0 means no filter)

10 different instances selecting random subsets of 100 genes each

Accuracy measures:

« Recall = TP/(TP + FN)
e Precision = TP /(TP + FP)

15

Synthetic datasets - Results

Accuracy
Multiple mode

q:0 q: 10 q: 20

100%

99%

\ ..l l.'. % \
r Y N [T ™, ! k-
98% v\ y l |

\ VA 13
R - 17
Y AR\ * 23
> 27

Avg. Recall

86% 1

95% -

0% 10% 20% 30% 40% 0% 10% 20% 30% 40% 0% 10% 20% 0% 40%

Avg. Precision

labels indicate T values

16

Synthetic datasets - Results

Accuracy
Multiple mode

q:0 q: 10 q: 20

100%
99%

- \ - -"... : VN A \ k
9825 r Y : | N,

\\\ I.'-l .l. + 17

Avg. Recall
-
@

97% | e : N o "
96% 1

95% -

0% 10% 20% 30% 40% 0% 10% 20% 30% 40% 0% 10% 20% 0% 40%
Avg. Precision

labels indicate T values

Good compromise: k = 17,7 =0.6,q = 10 -~ R = 99.46%, P = 28.8%.

17

Synthetic datasets - Results

Running times

q: 0 q: 10 q: 20
60
) k
o 50
E -
= .
[=)] .
=
&
40 5 !
" * e 9
.__ — i ®
. *— . - e ® - -
L — | - |] | - 1 & 1 — o .
S 4
304 — o - - -
0.2 0.4 0.6 08 02 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Memory usage was always below 2.1GB

17

18

Replication of real-world analyses

Trincado et al. Genome Biology (2018) 19:40

https://doi.org/10.1186/s13059-018-1417-1 Genome B|O|Ogy

METHOD Open Access

SUPPA2: fast, accurate, and uncertainty- ® e
aware differential splicing analysis across
multiple conditions

Juan L. Trincado'", Juan C. Entizne?’, Gerald Hysenaj®, Babita Singh', Miha Skalic', David J. Elliott®
and Eduardo Eyras™*

Abstract

19

Replication of real-world analyses

Aim: Differential analysis of AS events

Input data:
e 6 PE RNA-Seq samples (~180M 101bp-long reads)

e 82 distinct genes with 83 exp. validated exon skipping events

Pipelines:
e SplAdder

o rMATS
o SUPPA2

20

Replication - Transcript quantification

Transcript quantification
Tool: Salmon

EffectivelLength MumReads TPM
60 000-
— 9 000
©
@ 40 000
e] 6 000
8 6000
=]
o
)
iC
- 000 3 000 20 000+
0 0 0
0 3000 6000 9000 0 3000 6000 9000 0 250 500 750

Original dataset
Red line = linear regression

21

Replication - Diff. expressed events

Pipeline

All
rMATS /8
Shark + rMATS /8
SplAdder 56
Shark + SplAdder 56
SUPPA2 66
Shark + SUPPA2 66

Validated events

p-value < 0.05

63

63

NA

NA

37

43

Time [min]

308
142
796
295

65

34

Memory [GB]

339
339
339
339

4.3

bk

Thanks to shark we can also decrease the max memory consumption to less
than 16GB w/o affecting running times (data not shown).

22

Speeding-up assembly-first analyses

SCIENTIFIC REPQRTS

Received: 15 September 2017
Accepted: 30 January 2018
Published online: 09 March 2018

Complementarity of assembly-first
“and mapping-first approaches for
‘alternative splicing annotation and
_differential analysis from RNAseq
‘data

Clara Benoit-Pilven?, Camille Marchet?, Emilie Chautard'?, Leandro Lima?, Marie-Pierre Lambert?,
- Gustavo Sacomoto?, Amandine Rey’, Audric Cologne?, Sophie Terrone?, Louis Dulaurier?,
- Jean-Baptiste Claude?, Cyril F. Bourgeois?, Didier Auboeuf! & Vincent Lacroix?

Genome-wide analvses estimate that more than 90% of multi exonic human adenes produce at least

23

Speeding-up assembly-first analyses

Preliminary results:

e Almost no changes in stat. signif. results
e Significant speed-up (from ~25h to ~3h)
e Significantly less memory (from ~12.5GB to ~5.5GB)

Ongoing work:

e Manual inspection of results

24

Conclusions

e Shark speeds up analyses by focusing on reads likely sequenced from
genes of interest

o Highly sensitive (almost no reads are lost)

o Good precision (dataset is substantially reduced)
e For more details - preprint on bioRyiv
« Ongoing work:

o Algorithmic solution is simple (but effective).

Can we do better?

o Clearly not suitable for all kind of analyses (i.e., transcriptome-wide

analyses).

But, if we want to focus on specific genes, do results change?

25

Thanks!

26

27

Synthetic datasets - Results

Accuracy
Single mode

q:0 q: 10 q: 20

100%

L) (2
& (2 '3 IT} e 02
€02 ®0.2———q[0.4 o[04
09% “~w(04 of02 NS

o02 53
98% k

Nt - 17

Avg. Recall
.

96% | Al

95% -

0% 10% 20 30% 40% 0% 10% 20% 30% 40% 0% 10% 0% 30% 40%
Avg. Precision

labels indicate T values

28

