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The problem

Sequencing technologies produce a lot of data

Sequencing datasets are piling up in public

repositories

What if | want to analyze only a subset of genes (RNA-

Seq studies)?

Notice: aligning RNA-Seq reads to the genome is not

an easy task!
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The Gene Assignment Problem

Given:

« S a set of RNA-Seq reads
o (7 a set of genes (genomic sequences)
. two parameters k € N* and 7 € [0, 1]

Compute {51, ...,S|g|} st foreachs € §; C S

o the set of bases of s "covered" by at least a k-mer shared with g; has
cardinality at least T - |s|

e such a cardinality is maximum (w.rt. other g; € G).



The Gene Assignment Problem - Goals

We want to be:

o alignment-free (reduce potential alisnment biases)
e highly sensitive (almost no reads are lost)

e as specific as possible (the dataset is reduced as much

as possible)
e very fast

e Use a modest amount of memory



The algorithm

High-level idea:
1. Index the k-mers of gene sequences in G

2. Assign each read s € S to its set of genes (if any)



The algorithm - Indexing genes

Index (BF', I, P):

e a Bloom filter BF storing k-mers of G
(with a single hash function H)

e an integer vector I storing indices of genes
associated to each k-mer

e a bit-vector P providing a mapping between BF
and I by "tagging" the boundaries among the

different subsets of genes in I



The algorithm - Indexing genes
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The algorithm - Indexing genes

gacttg
k-mer T

lh = H(e)

BF 1 1 1 1 1
v = rankj (BF, h)
p1 = selecty (P, v /\p2 — selecty (P, v)

P 111 1 1 1
— !
I

——— GENES(e) ———



The algorithm - How to build the index?

1. Scan each k-mer of the gene sequences in G and

store them in BF' (using a single hash function H)
2. Associate an empty list L, to each 1 in BF

3. Re-scan each k-mer e of each g; € G and add 7 to the
list L, associated to the 1 at position H(e) in BF

4. Copy (preserving the order) all the lists L, into I while

tagging the boundaries between lists with a 1 in P
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The algorithm - Assigning reads

To assign each read s € S

1. For each k-mer e € s:
1. Query the index to find the genes containing e
(FP are possible due to BF)

2. For each gene, compute how many bases are

covered by e but not by previous k-mers

2. Output the IDs of genes that cover the largest number

of bases of s if > 7 - |s| bases
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Implementation

e Shark IS avallable at
https://github.com/AlgoLab/shark

e Binaries through Bioconda
conda config --add channels bioconda

conda 1nstall shark

e |ibraries:

o sdsl-lite for DS

o |ntel TBB for multi-threading
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https://github.com/AlgoLab/shark

Does it work?
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Experimental results

« How k and 7 affect sensitivity and specificity?
- synthetic datasets
e |s Shark useful?
o Does It change the results?
o Does it make analyses faster and/or less memory
hungry?

- replication of "real-world" analyses
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Synthetic datasets - Data

Input data:

e RNA-Seq sample of 10M 100bp-long reads on chr1, 17, 21

ke {13,17,23,27,31}

T € {0.2,0.4,0.6,0.8}

k-mers covering bases with PHRED quality score < g have been
discarded, with g € {0, 10,20} ( ¢ = 0 means no filter)

10 different instances selecting random subsets of 100 genes each

Accuracy measures:

« Recall = TP/(TP + FN)
e Precision = TP /(TP + FP)
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Synthetic datasets - Results
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Synthetic datasets - Results
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Good compromise: k = 17,7 =0.6,q = 10 -~ R = 99.46%, P = 28.8%.
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Synthetic datasets - Results

Running times
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Memory usage was always below 2.1GB
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Replication of real-world analyses

Trincado et al. Genome Biology (2018) 19:40

https://doi.org/10.1186/s13059-018-1417-1 Genome B|O|Ogy

METHOD Open Access

SUPPA2: fast, accurate, and uncertainty- ® e
aware differential splicing analysis across
multiple conditions

Juan L. Trincado'", Juan C. Entizne?’, Gerald Hysenaj®, Babita Singh', Miha Skalic', David J. Elliott®
and Eduardo Eyras™*

Abstract
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Replication of real-world analyses

Aim: Differential analysis of AS events

Input data:
e 6 PE RNA-Seq samples (~180M 101bp-long reads)

e 82 distinct genes with 83 exp. validated exon skipping events

Pipelines:
e SplAdder

o rMATS
o SUPPA2
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Replication - Transcript quantification

Transcript quantification
Tool: Salmon
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Replication - Diff. expressed events

Pipeline

All
rMATS /8
Shark + rMATS /8
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Thanks to shark we can also decrease the max memory consumption to less
than 16GB w/o affecting running times (data not shown).
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Speeding-up assembly-first analyses

SCIENTIFIC REPQRTS
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Accepted: 30 January 2018
Published online: 09 March 2018

Complementarity of assembly-first
“and mapping-first approaches for
‘alternative splicing annotation and
_differential analysis from RNAseq
‘data

Clara Benoit-Pilven?, Camille Marchet?, Emilie Chautard'?, Leandro Lima?, Marie-Pierre Lambert?,
- Gustavo Sacomoto?, Amandine Rey’, Audric Cologne?, Sophie Terrone?, Louis Dulaurier?,
- Jean-Baptiste Claude?, Cyril F. Bourgeois?, Didier Auboeuf! & Vincent Lacroix?

Genome-wide analvses estimate that more than 90% of multi exonic human adenes produce at least
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Speeding-up assembly-first analyses

Preliminary results:

e Almost no changes in stat. signif. results
e Significant speed-up (from ~25h to ~3h)
e Significantly less memory (from ~12.5GB to ~5.5GB)

Ongoing work:

e Manual inspection of results
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Conclusions

e Shark speeds up analyses by focusing on reads likely sequenced from
genes of interest

o Highly sensitive (almost no reads are lost)

o Good precision (dataset is substantially reduced)
e For more details - preprint on bioRyiv
« Ongoing work:

o Algorithmic solution is simple (but effective).

Can we do better?

o Clearly not suitable for all kind of analyses (i.e., transcriptome-wide

analyses).

But, if we want to focus on specific genes, do results change?
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Thanks!
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Synthetic datasets - Results

Accuracy
Single mode
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