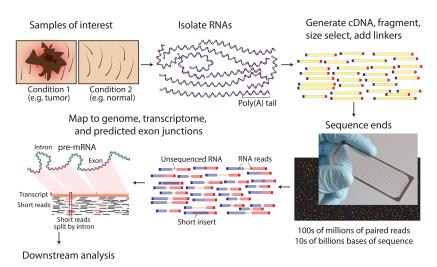
# Mapping short RNA-Seq by comparing tree


Work in progress Possibly useless

Matthias Zytnicki

INRAE, MIAT

DSB 2020

# RNA-Seq



Griffiths et al., PLOS Comp. Biol., 2015

# Mapping

#### Definition

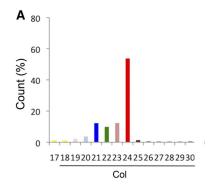
Prediction of the locus which produced the RNA read.

| Read | Genome                                  |
|------|-----------------------------------------|
| ACGT | CATCAGTCTAG <mark>ACGT</mark> TCACAACCA |
|      | $\Rightarrow$ chr1:12–15                |

## Tricky situations

• Reads may be slightly different from the genome sequence.

| Read | Genome                   |  |  |  |
|------|--------------------------|--|--|--|
| ACGT | CATCAGTCTAGACGGTCACAACCA |  |  |  |


• Corresponding loci are repeated.

| Read | Genome                              |
|------|-------------------------------------|
| ACGT | ACAT <mark>ACGT</mark> TCACACGTCGAT |

# Our question

## Particularities of sRNA-Seq

- A population of different classes of small RNAs: miRNAs, tRFs, siRNAs, piRNAs, etc.
- They are short (about 22–24bp, after trimming).
- Sequences are highly duplicated ( $\sim$ 5% the exact same read).
- Most mismatches happen at the ends of the reads.



| ID        | ¢   | Accession * | RPM 0 | Chromosome ( | Start 0  | End 0    | Strand 0 |
|-----------|-----|-------------|-------|--------------|----------|----------|----------|
| ath-MIR15 | ia. | MI0000178   |       | chr2         | 10676451 | 10676573 |          |
| ath-MIR15 | ib. | MI0000179   | -     | chr4         | 15074899 | 15075081 | +        |
| ath-MIR15 | ic  | MI0000180   | -     | chr4         | 15415418 | 15415521 |          |
| ath-MIR15 | Bd  | MI0000181   |       | chr5         | 3456632  | 3456749  |          |
| ath-MIR15 | ie. | MI0000182   |       | chr5         | 3867207  | 3867313  | +        |
| ath-MIR15 | Ħ   | MI0000183   | -     | chr5         | 9136106  | 9136237  | +        |
| ath-MIR15 | 7a  | MI0000184   | -     | chr1         | 24913202 | 24913299 | -        |
| ath-MIR15 | 7ь  | MI0000185   |       | chr1         | 24921086 | 24921217 | +        |
| ath-MIR15 | 7c  | MI0000186   |       | chr3         | 6244500  | 6244716  |          |
| ath-MIR15 | 7d  | MI0000187   |       | chr1         | 18026811 | 18027031 | -        |

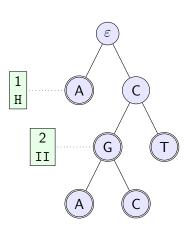
from miRBase

# Our question — Cont.

#### Observation

- Most mapping tool developments are dedicated to long reads.
- There is no dedicated tool for sRNAs.

# Usual (biological) query


For each read, get me *all* the regions with *minimum* number of mismatches n, with  $n \le k$ .

## Data

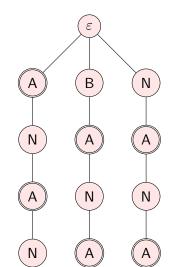
#### Reads

- Stored in a tree.
- Counts, and best quality is kept.

@read1 @read4 Α CGA Η HHI @read2 @read5 CG CGC + + ΗI IIH @read3 @read6 CG CT + ΙH ΙI



## Data


#### Genome

- Stored in a suffix array.
- Using BWA implementation.

# Example

BANANA

## Suffix tree



#### Data

#### Genome

- Stored in a suffix array.
- Using BWA implementation.

# Example

BANANA

## List of suffixes

BANANA ANANA NANA ANA

NA

IVA.

A

# Suffix array

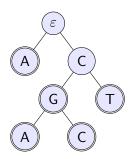
5 A

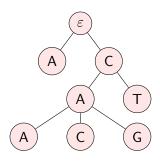
3 ANA

ANANA

0 BANANA

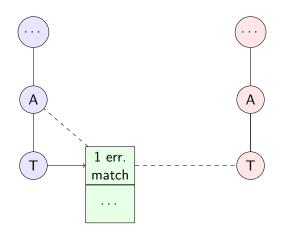
4 NA


NANA


8 / 20

## Main idea

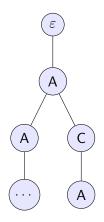
#### Aim


- For each accepting "read node," compute the all the "genome nodes" with minimum distance not greater than k.
- For each "reads node," compute recursively the all the "genome nodes" with distance not greater than k.





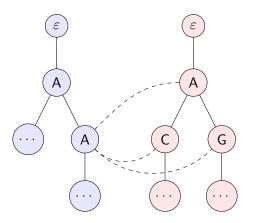
Note: The genome tree here is not an actual suffix tree. It is just presented as an illustration.


# Implementation



# Optimization 1

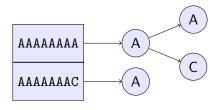
# Expect a 0-error mapping first


- Map with no error first.
- In case of error at depth d, add an error up to depth d.



# Optimization 2

## Map the unbranched regions "the usual way"


When a read unbranched terminal path is found, gather all the corresponding genome sequences, and apply a banded Smith-Waterman up to the leaves.



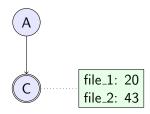
# Optimization 3

# The genome tree is a vector of 4<sup>8</sup> trees

- The first tree is labelled AAAAAAA.
- The second tree is labelled AAAAAAAC.
- etc.
- Each tree starts at depth 8.



# Other optimizations


Remove low complexity reads

ACACACACA

Use radix tree instead of standard tree for the reads tree



Can process several reads files



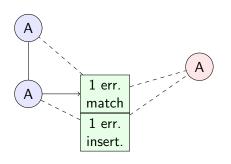
## Results

#### Test case

• 15,492,953 reads of size 15–101.

• Genome: A. thaliana.

BWA aln: 14min, 221kB.


• srnaMapper: 6min, 1.6GB.

#### Bottleneck

| %     | cumulative | self    |          |                 |
|-------|------------|---------|----------|-----------------|
| time  | seconds    | seconds | calls    | name            |
| 47.53 | 161.27     | 161.27  |          | bwt_2occ        |
| 26.24 | 250.28     | 89.01   |          | bwt_occ         |
| 9.92  | 283.93     | 33.65   | 43390524 | mapWithoutError |

## **Problem**

#### # states increase



# Compare to dynamic programming

|               | ε                          |               | Α |                                    | Α |
|---------------|----------------------------|---------------|---|------------------------------------|---|
| $\varepsilon$ | 0                          | $\rightarrow$ | 1 | $\rightarrow$                      | 2 |
| Α             | $\stackrel{\downarrow}{1}$ | ×             | 0 | $\stackrel{\searrow}{\rightarrow}$ | 1 |

#### Bottom line

- You do not want all the mappings.
- How to implement a good # states vs states elimination balance?

# Implementation details — Reads

## First pass

- Edges contain the nucleotides (and the size), and the address to the following node.
- No predefined order.
- Each node contains 4 edges, the read counts, and the qualities.

## Second pass

- Nodes are sorted in a depth-first fashion.
- Read counts and qualities are stored in a parallel vector.

# Implementation details — Rest

#### Genome

- Tree: the BWA structure.
- Buffer: last children intervals are kept in memory.

#### Smith-Waterman

A (stupid) read length×(2k + 1) matrix.

#### Next

- Clever way to reduce the number of states.
- Bug fixes (read mapping at the ends of a chromosome...).
- Other optimizations (branch sequences in an external string?).
- Use several processors.
- Available at https://github.com/mzytnicki/srnaMapper (branch sw).

That's all, folks!

Thank you for your attention!