Dynamic quasi-minimal perfect hash function for k-mers

Paola Bonizzoni¹, **Luca Denti**¹, Erik Garrison², Yuri Pirola¹ and Marco Previtali¹

¹Università degli studi di Milano - Bicocca ²University of California, Santa Cruz

February 5, 2020

Background and Motivation

A MPHF is an injective function
$$h:\{s_1,\ldots,s_n\}
ightarrow [1,n]$$

Static	Dynamic					
Applications:						
- Meraculous [Chapman et al. PloS one (2011)]						
- BCALM2 [Chikhi et al. Bioinformatics (2016)]						
- pufferfish [Almodaresi et al. Bioinformatics (2018)]						
Implementations:						

mplementations.

- BBHash [Limasset et al. SEA (2017)]
- EMPHF [Belazzougui et al. DCC (2014)]

Background and Motivation

A MPHF is an injective function
$$h:\{s_1,\ldots,s_n\} o [1,n]$$

Static

Applications:

- Meraculous [Chapman et al. PloS one (2011)]

- BCALM2 [Chikhi et al. Bioinformatics (2016)]

- pufferfish [Almodaresi et al. Bioinformatics (2018)]

Implementations:

- BBHash [Limasset et al. SEA (2017)]

- EMPHF [Belazzougui et al. DCC (2014)]

Dynamic

Applications:

– vg

[Garrison et al. Nature (2018)]

2/10

Implementations:

- ?

Challenge

How to retrieve an element when a collision occurs?

Our idea: combine a MPHF with a fully-dynamic de Bruijn graph

Our result: a dynamic MPHF for k-mers

Challenge

How to retrieve an element when a collision occurs?

Our idea:

combine a MPHF with a fully-dynamic de Bruijn graph

Our result:

a dynamic MPHF for k-mers

Challenge

How to retrieve an element when a collision occurs?

Our idea: combine a MPHF with a fully-dynamic de Bruijn graph

Our result: a dynamic MPHF for k-mers

[Image taken from Limasset et al. SEA (2017)]

4/10

uca Denti DSB2020 February 5, 2020

Fully Dynamic de Bruijn graph

- bit matrices IN and OUT
- forest ${\mathcal F}$ of spanning trees
- list R of roots

[Belazzougui et al. SPIRE (2016); Crawford et al. Bioinformatics (2018)]

Fully Dynamic de Bruijn graph

- bit matrices IN and OUT
- forest ${\mathcal F}$ of spanning trees
- list R of roots

		Ι	N		OUT				k_2
	A	C	G	T	A	C	G	T	k_3
$\frac{1}{1(k_3)}$	0	0	0	0	0	0	0	1	k_1
$2(k_1)$	0	0	0	0	1	1	1	0	G
$3(k_4)$	0	1	0	0	0	0	0	0	CF
$4 (k_2)$	1	0	0	0	0	0	0	0	k_5
$5 (k_5)$	0	0	1	1	0	0	0	0	k_4
									D /1- 1- \

$$R = \langle k_1, k_3 \rangle$$

[Belazzougui et al. SPIRE (2016); Crawford et al. Bioinformatics (2018)]

- the MPHF is a list of bit vectors (blocks)
- whenever we insert an element, we update the dBG
- the new elements are always added to the last block
- a new block is created if:
 - a) the last block is too "full"
 - b) a collision occurs in the last block
- if a collision occurs:
 - 1. recreate the element by visiting the dBG
 - 2. insert both elements

- the MPHF is a list of bit vectors (blocks)
- whenever we insert an element, we update the dBG
- the new elements are always added to the last block
- a new block is created if:
 - a) the last block is too "full"
 - b) a collision occurs in the last block
- if a collision occurs:
 - 1. recreate the element by visiting the dBG
 - 2. insert both elements

- the MPHF is a list of bit vectors (blocks)
- whenever we insert an element, we update the dBG
- the new elements are always added to the last block
- a new block is created if:
 - a) the last block is too "full"
 - b) a collision occurs in the last block
- if a collision occurs:
 - 1. recreate the element by visiting the dBG
 - 2. insert both elements

- the MPHF is a list of bit vectors (blocks)
- whenever we insert an element, we update the dBG
- the new elements are always added to the last block
- a new block is created if:
 - a) the last block is too "full"
 - b) a collision occurs in the last block
- if a collision occurs:
 - 1. recreate the element by visiting the dBG
 - 2. insert both elements

- the MPHF is a list of bit vectors (blocks)
- whenever we insert an element, we update the dBG
- the new elements are always added to the last block
- a new block is created if:
 - a) the last block is too "full"
 - b) a collision occurs in the last block
- if a collision occurs:
 - 1. recreate the element by visiting the dBG
 - 2. insert both elements

Structure overview

 dBG^1 : bit matrices + forest + roots

¹ Belazzougui et al. SPIRE (2016)

7/10

Luca Denti DSB2020 February 5, 2020

 $\langle k_1 \rangle$

 $\langle k_1, k_3 \rangle$

			I	N		OUT				k_2
		A	C	G	T	A	C	G	T	k_3
	$1 (k_3)$	0	0	0	0	0	0	0	0	k_1
	$2(k_1)$	0	0	0	0	1	1	0	0	
\blacktriangleright	$3(k_4)$	0	1	0	0	0	0	0	0	C
	$4(k_2)$	1	0	0	0	0	0	0	0	\
										k_4
										$\langle k_1, k_3 \rangle$

		I	N					
	A	C	G	T	A	C	G	T
$ \begin{array}{c} 1 \ (k_3) \\ 2 \ (k_1) \\ 3 \ (k_4) \\ 4 \ (k_2) \end{array} $	0	0	0	0	0	0	0	0
$2(k_1)$	0	0	0	0	1	1	0	0
$3(k_4)$	0	1	0	0	0	0	0	0
$4(k_2)$	1	0	0	0	0	0	0	0

			I	N		OUT				k_2		
		A	C	G	T	A	C	G	T	k_3		
	$1 (k_3)$	0	0	0	0	0	0	0	1	k_1		
	$2(k_1)$	0	0	0	0	1	1	1	0	G		
	$3(k_4)$	0	1	0	0	0	0	0	0	1.		
	$4(k_2)$	1	()	0	0	0	0	0	0	k_5		
>	$5(k_2)$	1	0	0	0	0	0	0	0	k_4		
>	$6 (k_5)$	0	0	1	1	0	0	0	0	$\langle k_1, k_3 \rangle$		

Deletion

Dynamic implementation of

- quasi-minimal perfect hash function for k-mers
- de Bruijn graph

0Qs

- is it reasonable and efficient in practice?
- can we also find good theoretical bounds?
- how many shifts should we allow?
- when should we create a new block?
- worst case: 2^{b-1} insertions in the last block (but in practice?)

[b blocks]

10 / 10

– when should we rebuild everything? can we reuse some parts?

Dynamic implementation of

- quasi-minimal perfect hash function for k-mers
- de Bruijn graph

OQs:

- is it reasonable and efficient in practice?
- can we also find good theoretical bounds?
- how many shifts should we allow?
- when should we create a new block?
- worst case: 2^{b-1} insertions in the last block (but in practice?)

[b blocks]

10 / 10

– when should we rebuild everything? can we reuse some parts?

Dynamic implementation of

- quasi-minimal perfect hash function for k-mers
- de Bruijn graph

OQs:

- is it reasonable and efficient in practice?
- can we also find good theoretical bounds?
- how many shifts should we allow?
- when should we create a new block?
- worst case: 2^{b-1} insertions in the last block (but in practice?)

[b blocks]

10 / 10

– when should we rebuild everything? can we reuse some parts?

Dynamic implementation of

- quasi-minimal perfect hash function for k-mers
- de Bruijn graph

OQs:

- is it reasonable and efficient in practice?
- can we also find good theoretical bounds?
- how many shifts should we allow?
- when should we create a new block?
- worst case: 2^{b-1} insertions in the last block (but in practice?) [b blocks]
- when should we rebuild everything? can we reuse some parts?

Dynamic implementation of

- quasi-minimal perfect hash function for k-mers
- de Bruijn graph

OQs:

- is it reasonable and efficient in practice?
- can we also find good theoretical bounds?
- how many shifts should we allow?
- when should we create a new block?
- worst case: 2^{b-1} insertions in the last block (but in practice?) [b blocks]
- when should we rebuild everything? can we reuse some parts?

Dynamic implementation of

- quasi-minimal perfect hash function for k-mers
- de Bruijn graph

OQs:

- is it reasonable and efficient in practice?
- can we also find good theoretical bounds?
- how many shifts should we allow?
- when should we create a new block?
- worst case: 2^{b-1} insertions in the last block (but in practice?) [b blocks]
- when should we rebuild everything? can we reuse some parts?

Thank You! Questions? Suggestions? Idea?

Wanna help us?