
Dynamic quasi-minimal perfect hash function for k-mers
Work in Progress

Paola Bonizzoni1, Luca Denti1, Erik Garrison2,
Yuri Pirola1 and Marco Previtali1

1Università degli studi di Milano - Bicocca
2University of California, Santa Cruz

February 5, 2020

Luca Denti DSB2020 February 5, 2020 1 / 10



Background and Motivation

A MPHF is an injective function h : {s1, . . . , sn} → [1, n]

Static

Applications:

– Meraculous [Chapman et al. PloS one (2011)]

– BCALM2 [Chikhi et al. Bioinformatics (2016)]

– pufferfish [Almodaresi et al. Bioinformatics (2018)]

Implementations:

– BBHash [Limasset et al. SEA (2017)]

– EMPHF [Belazzougui et al. DCC (2014)]

Dynamic

Applications:

– vg [Garrison et al. Nature (2018)]

-

-

Implementations:

– ?

Luca Denti DSB2020 February 5, 2020 2 / 10



Background and Motivation

A MPHF is an injective function h : {s1, . . . , sn} → [1, n]

Static

Applications:

– Meraculous [Chapman et al. PloS one (2011)]

– BCALM2 [Chikhi et al. Bioinformatics (2016)]

– pufferfish [Almodaresi et al. Bioinformatics (2018)]

Implementations:

– BBHash [Limasset et al. SEA (2017)]

– EMPHF [Belazzougui et al. DCC (2014)]

Dynamic

Applications:

– vg [Garrison et al. Nature (2018)]

-

-

Implementations:

– ?

Luca Denti DSB2020 February 5, 2020 2 / 10



Challenge

How to retrieve an element when a collision occurs?

h(s7)

s?

s1, s2, s3
s4, s5, s6

Our idea: combine a MPHF with a fully-dynamic de Bruijn graph

Our result: a dynamic MPHF for k-mers

Luca Denti DSB2020 February 5, 2020 3 / 10



Challenge

How to retrieve an element when a collision occurs?

h(s7)

s?

s1, s2, s3
s4, s5, s6

Our idea: combine a MPHF with a fully-dynamic de Bruijn graph

Our result: a dynamic MPHF for k-mers

Luca Denti DSB2020 February 5, 2020 3 / 10



Challenge

How to retrieve an element when a collision occurs?

h(s7)

s?

s1, s2, s3
s4, s5, s6

Our idea: combine a MPHF with a fully-dynamic de Bruijn graph

Our result: a dynamic MPHF for k-mers

Luca Denti DSB2020 February 5, 2020 3 / 10



BBHash

[Image taken from Limasset et al. SEA (2017)]

Luca Denti DSB2020 February 5, 2020 4 / 10



Fully Dynamic de Bruijn graph

– bit matrices IN and OUT

– forest F of spanning trees

– list R of roots

C
CTTGCACTTG

[Belazzougui et al. SPIRE (2016); Crawford et al. Bioinformatics (2018)]

Luca Denti DSB2020 February 5, 2020 5 / 10



Fully Dynamic de Bruijn graph

– bit matrices IN and OUT

– forest F of spanning trees

– list R of roots

C
CTTGCACTTG

IN OUT

A C G T A C G T

1 (k3) 0 0 0 0 0 0 0 1
2 (k1) 0 0 0 0 1 1 1 0
3 (k4) 0 1 0 0 0 0 0 0
4 (k2) 1 0 0 0 0 0 0 0
5 (k5) 0 0 1 1 0 0 0 0

R = 〈k1, k3〉

F

k2

k1

k4

k3

k5

G
T

A

C

[Belazzougui et al. SPIRE (2016); Crawford et al. Bioinformatics (2018)]

Luca Denti DSB2020 February 5, 2020 5 / 10



Our idea

– the MPHF is a list of bit vectors (blocks)

– whenever we insert an element, we update the dBG

– the new elements are always added to the last block

– a new block is created if:

a) the last block is too “full”

b) a collision occurs in the last block

– if a collision occurs:

1. recreate the element by visiting the dBG

2. insert both elements

Luca Denti DSB2020 February 5, 2020 6 / 10



Our idea

– the MPHF is a list of bit vectors (blocks)

– whenever we insert an element, we update the dBG

– the new elements are always added to the last block

– a new block is created if:

a) the last block is too “full”

b) a collision occurs in the last block

– if a collision occurs:

1. recreate the element by visiting the dBG

2. insert both elements

Luca Denti DSB2020 February 5, 2020 6 / 10



Our idea

– the MPHF is a list of bit vectors (blocks)

– whenever we insert an element, we update the dBG

– the new elements are always added to the last block

– a new block is created if:

a) the last block is too “full”

b) a collision occurs in the last block

– if a collision occurs:

1. recreate the element by visiting the dBG

2. insert both elements

Luca Denti DSB2020 February 5, 2020 6 / 10



Our idea

– the MPHF is a list of bit vectors (blocks)

– whenever we insert an element, we update the dBG

– the new elements are always added to the last block

– a new block is created if:

a) the last block is too “full”

b) a collision occurs in the last block

– if a collision occurs:

1. recreate the element by visiting the dBG

2. insert both elements

Luca Denti DSB2020 February 5, 2020 6 / 10



Our idea

– the MPHF is a list of bit vectors (blocks)

– whenever we insert an element, we update the dBG

– the new elements are always added to the last block

– a new block is created if:

a) the last block is too “full”

b) a collision occurs in the last block

– if a collision occurs:

1. recreate the element by visiting the dBG

2. insert both elements

Luca Denti DSB2020 February 5, 2020 6 / 10



Structure overview

IN OUT

A C G T A C G T

1 (k3) 0 0 0 0 0 0 0 1
2 (k1) 0 0 0 0 1 1 1 0
3 (k4) 0 1 0 0 0 0 0 0
4 (k2) 1 0 0 0 0 0 0 0
5 (k5) 0 0 1 1 0 0 0 0

k2

k1

k4

k3

k5

HF: bit vector

〈k1, k3〉

dBG1: bit matrices + forest + roots

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 7 / 10



Insertion

IN OUT

A C G T A C G T

5 (k5) 0 0 0 1 0 0 0 0

k1, k2, k3
k4, k5

A0

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 8 / 10



Insertion

IN OUT

A C G T A C G T

1 (k1) 0 0 0 0 0 0 0 0 k1

〈k1〉

k1, k2, k3
k4, k5

A0

h0(k1)

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 8 / 10



Insertion

IN OUT

A C G T A C G T

1 (k1) 0 0 0 0 1 0 0 0
2 (k2) 1 0 0 0 0 0 0 0

k2

k1

〈k1〉

k1, k2, k3
k4, k5

A0

h0(k2)

A

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 8 / 10



Insertion

IN OUT

A C G T A C G T

1 (k3) 0 0 0 0 0 0 0 0
2 (k1) 0 0 0 0 1 0 0 0
3 (k2) 1 0 0 0 0 0 0 0

k2

k1
k3

〈k1, k3〉

k1, k2, k3
k4, k5

A0

h0(k3)

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 8 / 10



Insertion

IN OUT

A C G T A C G T

1 (k3) 0 0 0 0 0 0 0 0
2 (k1) 0 0 0 0 1 1 0 0
3 (k4) 0 1 0 0 0 0 0 0
4 (k2) 1 0 0 0 0 0 0 0

k2

k1

k4

k3

〈k1, k3〉

k1, k2, k3
k4, k5

A0

h0(k4)

C

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 8 / 10



Insertion

IN OUT

A C G T A C G T

1 (k3) 0 0 0 0 0 0 0 0
2 (k1) 0 0 0 0 1 1 0 0
3 (k4) 0 1 0 0 0 0 0 0
4 (k2) 1 0 0 0 0 0 0 0

k1, k2, k3
k4, k5

A0

h0(k5)

k2

k1

k4

k3

k5

〈k1, k3〉

T
G

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 8 / 10



Insertion

IN OUT

A C G T A C G T

1 (k3) 0 0 0 0 0 0 0 1
2 (k1) 0 0 0 0 1 1 1 0
3 (k4) 0 1 0 0 0 0 0 0
4 (k2) 1 0 0 0 0 0 0 0
5 (k2) 1 0 0 0 0 0 0 0
6 (k5) 0 0 1 1 0 0 0 0

k2

k1

k4

k3

k5

〈k1, k3〉

k1, k2, k3
k4, k5

A0

h1(k2)

T

h1(k5)

Collision BV

A1

G

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 8 / 10



Deletion

IN OUT

A C G T A C G T

1 (k3) 0 0 0 0 0 0 0 1
2 (k1) 0 0 0 0 1 0 1 0
3 (k4) 0 1 0 0 0 0 0 0
4 (k2) 1 0 0 0 0 0 0 0
5 (k2) 1 0 0 0 0 0 0 0
6 (k5) 0 0 1 1 0 0 0 0

k2

k1

k4

k3

k5

〈k1, k3〉

k1, k2, k3
k4, k5

A0

Collision BV

A1

Deletion BV

h0(k4)

1Belazzougui et al. SPIRE (2016)

Luca Denti DSB2020 February 5, 2020 9 / 10



Conclusions and Open Questions

Dynamic implementation of

– quasi-minimal perfect hash function for k-mers

– de Bruijn graph

OQs:

– is it reasonable and efficient in practice?

– can we also find good theoretical bounds?

– how many shifts should we allow?

– when should we create a new block?

– worst case: 2b−1 insertions in the last block (but in practice?) [b blocks]

– when should we rebuild everything? can we reuse some parts?

Luca Denti DSB2020 February 5, 2020 10 / 10



Conclusions and Open Questions

Dynamic implementation of

– quasi-minimal perfect hash function for k-mers

– de Bruijn graph

OQs:

– is it reasonable and efficient in practice?

– can we also find good theoretical bounds?

– how many shifts should we allow?

– when should we create a new block?

– worst case: 2b−1 insertions in the last block (but in practice?) [b blocks]

– when should we rebuild everything? can we reuse some parts?

Luca Denti DSB2020 February 5, 2020 10 / 10



Conclusions and Open Questions

Dynamic implementation of

– quasi-minimal perfect hash function for k-mers

– de Bruijn graph

OQs:

– is it reasonable and efficient in practice?

– can we also find good theoretical bounds?

– how many shifts should we allow?

– when should we create a new block?

– worst case: 2b−1 insertions in the last block (but in practice?) [b blocks]

– when should we rebuild everything? can we reuse some parts?

Luca Denti DSB2020 February 5, 2020 10 / 10



Conclusions and Open Questions

Dynamic implementation of

– quasi-minimal perfect hash function for k-mers

– de Bruijn graph

OQs:

– is it reasonable and efficient in practice?

– can we also find good theoretical bounds?

– how many shifts should we allow?

– when should we create a new block?

– worst case: 2b−1 insertions in the last block (but in practice?) [b blocks]

– when should we rebuild everything? can we reuse some parts?

Luca Denti DSB2020 February 5, 2020 10 / 10



Conclusions and Open Questions

Dynamic implementation of

– quasi-minimal perfect hash function for k-mers

– de Bruijn graph

OQs:

– is it reasonable and efficient in practice?

– can we also find good theoretical bounds?

– how many shifts should we allow?

– when should we create a new block?

– worst case: 2b−1 insertions in the last block (but in practice?) [b blocks]

– when should we rebuild everything? can we reuse some parts?

Luca Denti DSB2020 February 5, 2020 10 / 10



Conclusions and Open Questions

Dynamic implementation of

– quasi-minimal perfect hash function for k-mers

– de Bruijn graph

OQs:

– is it reasonable and efficient in practice?

– can we also find good theoretical bounds?

– how many shifts should we allow?

– when should we create a new block?

– worst case: 2b−1 insertions in the last block (but in practice?) [b blocks]

– when should we rebuild everything? can we reuse some parts?

Luca Denti DSB2020 February 5, 2020 10 / 10



Thank You!
Questions? Suggestions? Idea?

Wanna help us?


