Dynamic quasi-minimal perfect hash function for k-mers
A Work in Progress A

Paola Bonizzoni!, Luca Denti!, Erik Garrison?,

Yuri Pirolal and Marco Previtalil

LUniversita degli studi di Milano - Bicocca
2University of California, Santa Cruz

February 5, 2020

S 12| V2 — EEEETE Relzitery 3, 2

1/10

Background and Motivation

A MPHF is an injective function h: {sy,

Static
Applications:
— Meraculous [Chapman et al. PloS one (2011)]
— BCALM2 [Chikhi et al. Bioinformatics (2016)]
— pufferfish famodaresiet al. Bioi ics (2018)]
Implementations:
— BBHash [Limasset et al. SEA (2017)]
— EMPHF [Belazzougui et al. DCC (2014)]

S 12| V2 — EEEET

coySnt — 1, 0]

February 5, 2020

2/10

Background and Motivation

A MPHF is an injective function h: {s1,...,s,} = [1,n]

Static Dynamic
Applications: Applications:
— Meraculous [Chapman et al. PloS one (2011)] - Vg [Garrison et al. Nature (2018)]
— BCALM2 [Chikhi et al. Bioinformatics (2016)]
— pufferfish famodaresiet al. Bioi ics (2018)]
Implementations: Implementations:
— BBHash [Limasset et al. SEA (2017)] -7
— EMPHF [Belazzougui et al. DCC (2014)]

EEEET Fabruary 512050720

Challenge

How to retrieve an element when a collision occurs?

h(87)j'
mElEEEREREEEEEEEEN

..,

S 12| V2 — EEEETE Felney o A 9/

Challenge

How to retrieve an element when a collision occurs?

h(87)j'
mElEEEREREEEEEEEEN
..,

Our idea: combine a MPHF with a fully-dynamic de Bruijn graph

S 12| V2 — EEEET Felney o A 9/

Challenge

How to retrieve an element when a collision occurs?

h(87)j'
mElEEEREREEEEEEEEN
..,

Our idea: combine a MPHF with a fully-dynamic de Bruijn graph

Our result: a dynamic MPHF for k-mers

S 12| V2 — EEEET Felney o A 9/

BBHash

A, A,
1] kg ks k,
h() hl h2
—> 0 = 0| Kk, > 1] kK
0 | kik, k,
F, 0 F, F,
1 3
0 | kyk;
r Ao : HAI . 1 !A2 .
‘1 | 0 ‘ 010 ‘1 @] 0 ‘1 (3)‘ 0 ‘1 @] 0 ‘1 (5)‘1 (6)
hy(k,) h(k,) hy(k,)

[Image taken from Limasset et al. SEA (2017)]

S 12| V2 — EEEETE Felney o A)0

Fully Dynamic de Bruijn graph

DSB2020 February 5, 2020 5/10

Fully Dynamic de Bruijn graph

— bit matrices IN and OUT C
— forest F of spanning trees

— list R of roots

IN 0UT ko
A C G T|4A4 ¢ G T .
A 3
1(ks)|O 0 0 o]0 0 0 1 M
2(k) |O 0 0 0|1 1 1 0 G T
3(ks)|O 1 0 0]0 0 0 0 o "
4k |1 0 0 0|0 0 0 O 5
5(s)|0 0 1 1]/0 0 0 0 ka
R = (ky,k3)

[Belazzougui et al. SPIRE (2016); Crawford et al. Bioinformatics (2018)]

DSB2020 February 5, 2020 5/10

Our idea

— the MPHF is a list of bit vectors (blocks)

S 12| V2 — EEEETE Felney o A B/

Our idea

— the MPHF is a list of bit vectors (blocks)

— whenever we insert an element, we update the dBG

S 12| V2 — EEEETE Felney o A B/

Our idea

— the MPHF is a list of bit vectors (blocks)
— whenever we insert an element, we update the dBG

— the new elements are always added to the last block

EEEET Fabruary 52050760

Our idea

the MPHF is a list of bit vectors (blocks)

— whenever we insert an element, we update the dBG

the new elements are always added to the last block

a new block is created if:

a) the last block is too “full”

b) a collision occurs in the last block

EEEET Fabruary 52050760

Our idea

the MPHF is a list of bit vectors (blocks)

— whenever we insert an element, we update the dBG

the new elements are always added to the last block

a new block is created if:

a) the last block is too “full”

b) a collision occurs in the last block

if a collision occurs:

1. recreate the element by visiting the dBG

2. insert both elements

EEEET Fabruary 52000760

Structure overview

ks

dBG!: bit matrices + forest + roots

1 Belazzougui et al. SPIRE (2016)

S 12| V2 — EEEETE Rney o A o)

Insertion

Luca Dent DSB2020

February 5, 2020

8/10

Insertion

IN 0uT

S 12| V2 — EEEETE Felney o A G0

Insertion

ho(k?Q)w
Ao
IN ouUT ko
A C G T|A C G T .
1(k)|O 0 0 0]1 0 0 0 M
» 2(ky) |1 0 0 0[]0 0 0 0

S 12| V2 — EEEETE Felney o A G0

Insertion

ho(k;g)w
Ao
IN ouT
A ¢ G T|A C G T
» 1(ks)|0O 0 0 0]0 0 0 O
2(1) [0 0 0 0|1 0 0 0
3(ks) |1 0 0 0|0 0 0 0

DSB2020

k2

° ks
k1

(ky1,ks3)

February 5, 2020 8/10

Insertion

ho(k4)w
HENEREEEE

Ao

ouT

IN
A C G T|A C G T

— M <

(ky1,ks3)

8/10

February 5, 2020

DSB2020

Insertion

ho (k?5)w

HENENEREE

Ao

ouT

ks

ks

ka
(K1, ks)

IN

A C G T|A C G T

8/10

February 5, 2020

DSB2020

Insertion

hl(kg)w hl(k5)w
(T TT T T T LI]

AO A1
LT T T T T TET I T T T T[] Cotision BY
IN ouT ko
A C G T|A ¢ G T ks
1(ks)|O 0 0 o]0 0 0 1 M
2(k;) /O 0 0 0|1 1 1 0 G T
3(ksy)| 0 1 0 0|0 0 0 O
ks
> 5(k2) 1 0 0 0 0 0 0 0 ka
» 6(ks) /O 0O 1 1,0 0 0 0 (v, k)

S 12| V2 — EEEETE Felney o A G0

Deletion

ho(k4)
w
!IDDIII\DIZD]I

AO A1
LT T T T T TET I T T T T[] Cotision BY
LI T T T T T TILT T T T T 1] Deletion BY
IN ouT ko
A C G T|A C G T ks
1(ks)|] 0 0 0 O0]0O 0 0 1 k1
2(ki)|0 0 0 0|1 0 1
ks
o
5(k) |1 0 0 0|0 0 0 0 k4
6(ks) | O 0 1 1,0 0 0 0

<klak3>

S 12| V2 — EEEETE Felney o A O

Conclusions and Open Questions

Dynamic implementation of
— quasi-minimal perfect hash function for k-mers
— de Bruijn graph

S 12| V2 — EEEETE Felney o A 1010

Conclusions and Open Questions

Dynamic implementation of
— quasi-minimal perfect hash function for k-mers
— de Bruijn graph

0Qs:
— is it reasonable and efficient in practice?

— EEEET

February 5, 2020

10/10

Conclusions and Open Questions

Dynamic implementation of
— quasi-minimal perfect hash function for k-mers
— de Bruijn graph

0Qs:

— is it reasonable and efficient in practice?

— can we also find good theoretical bounds?

S 12| V2 — EEEETE Felney o A0 1010

Conclusions and Open Questions

Dynamic implementation of
— quasi-minimal perfect hash function for k-mers
— de Bruijn graph

0Qs:
is it reasonable and efficient in practice?

can we also find good theoretical bounds?

how many shifts should we allow?
— when should we create a new block?

DSB2020 February 5, 2020 10 /10

Conclusions and Open Questions

Dynamic implementation of
— quasi-minimal perfect hash function for k-mers
— de Bruijn graph

0Qs:

is it reasonable and efficient in practice?

can we also find good theoretical bounds?

how many shifts should we allow?
— when should we create a new block?

— worst case: 2~ insertions in the last block (but in practice?) [b blocks]

DSB2020 February 5, 2020 10 /10

Conclusions and Open Questions

Dynamic implementation of
— quasi-minimal perfect hash function for k-mers
— de Bruijn graph

0Qs:

— is it reasonable and efficient in practice?

— can we also find good theoretical bounds?

how many shifts should we allow?
— when should we create a new block?

— worst case: 2~ insertions in the last block (but in practice?) [b blocks]

when should we rebuild everything? can we reuse some parts?

SRS Fabriary 5205070/

Thank You!
Questions? Suggestions? ldea?
Wanna help us?

