
Approximating Longest Common
Substring with k mismatches

Garance Gourdel, Tomasz Kociumaka, Jakub
Radoszewski, Tatiana Starikovskaya

Similarity measures

Given two strings X and Y, how similar are they?

Ideally, we want a similarity measure that is

I Robust: Small change in the input⇒ small change of the measure

I Fast to compute

Applications in Bioinformatics, Information Retrieval.

Edit distance

Smallest number of insertions, deletions, and substitutions required
to convert one string into the other.

EditDistance(GATTACAT, ATTACATT) = 2

Can be computed in quadratic time using dynamic programming. This
is probably optimal:

[Backurs and Indyk’15] The Edit distance can’t be computed in
strongly subquadratic time, unless SETH is false.

SETH (Strong Exponential Time Hypothesis)
∀δ > 0, there exists an integer q such that SAT on q-CNF formulas with
m clauses and n variables cannot be solved in time mO(1)2(1−δ)n.

Longest Common Substring

The maximal length of a string that occurs in both strings.

LCS (TAAGC, AAGAA) = 3

Can be computed in O(n) time [Hui’92].

Unfortunately, not robust: can change a lot when we change a few
characters of the input.

This work

Longest Common Substring with k mismatches problem

Input: an integer k, strings S1,S2 of length n

Output: the maximal length of a substring of S1 that occurs in S2

with k mismatches

LCSk (TAAGC, AAGAA) = 4 for k = 1

Closely related to the k-macs (the k-mismatch average common
substring) distance [Leimeister, Morgenstern’14]

Longest Common Substring with k mismatches

Exact solutions:

I k = 1: O(n log n) time [Flouri et al.’15]

I O(n2) time - dyn. prog. [Flouri et al.’15]

I O(n((k + 1)(|LCS|+ 1))k) or O(n2|LCSk|/k) time [Grabowski’15]

I k1.5n2/2Ω(
√

log n
k) time, rand. [Abboud et al.’15]

I O(n logk n) time [Thankachan et al.’16]

I LCSk ≥ log2k+2 n: O(n) time [Charalampopoulos et al.’18]

All solutions use O(n) space.

In general, LCSk cannot be solved in strongly subquadratic time, unless
SETH is false [Kociumaka et al.’19]

Longest Common Substring with approx. k mismatches
Input: an integer k, a constant ε > 0, strings S1,S2 of length n

Output: The length LCSk̃ ≥ LCSk(T1,T2) of a substring of S1 that
occurs in S2 with ≤ (1 + ε) · k mismatches

S1 = TAAGCTTT, S2 = CACGTTTC, k = 2, ε = 1.5
LCSk(S1, S2) = 6⇒ we can return AGCTTT

I More robust than LCS, easier to compute

I O(n1+1/(1+ε) log2 n) time, O(n1+1/(1+ε)) space for any 0 < ε < 2
[Kociumaka et al.’19]

I Main idea: locality-sensitive hashing

I Very complex system of hash functions, superlinear space

Longest Common Substring with approx. k mismatches
Input: an integer k, a constant ε > 0, strings S1,S2 of length n

Output: The length LCSk̃ ≥ LCSk(T1,T2) of a substring of S1 that
occurs in S2 with ≤ (1 + ε) · k mismatches

S1 = TAAGCTTT, S2 = CACGTTTC, k = 2, ε = 1.5
LCSk(S1, S2) = 6⇒ we can return AGCTTT

I More robust than LCS, easier to compute

I O(n1+1/(1+ε) log3 n) time, O(n) space for any ε > 0 [This work]

I Main idea: locality-sensitive hashing

I Practical: Simple system of hash functions, linear space

Reduction to the decision variant

Twenty question game with a liar

Given 0 ≤ A,B ≤ n. Carole must answer YES if x ≤ A and NO if x > B.
To win, Paul must return some number in [A,B].

Corollary of [Dhagat, Gács, Winkler ’92]: For any r < 1
3 , Paul can win

by asking d 8 log n
(1−3r)2 e questions.

Decision variant

Input: integers k, `, a constant ε > 0, strings S1,S2 of length n

Output:

1. YES if ` ≤ LCSk;

2. YES or NO if LCSk < ` ≤ LCS(1+ε)k;

3. NO if LCS(1+ε)k < `.

The answer must be correct with probability at least 3/4.

Longest Common Substring with approx. k mismatches:

I A = LCSk and B = LCS(1+ε)k.

I An algorithm for the decision variant plays the role of Carole.

I With d 8 log n
(1−3r)2 e questions, Paul will find x ∈ [LCSk, LCS(1+ε)k] for

some 1/4 < r < 1/3.

Decision variant

Input: integers k, `, a constant ε > 0, strings S1,S2 of length n

Output:

1. YES if ` ≤ LCSk;

2. YES or NO if LCSk < ` ≤ LCS(1+ε)k;

3. NO if LCS(1+ε)k < `.

The answer must be correct with probability at least 3/4.

Longest Common Substring with approx. k mismatches:

I A = LCSk and B = LCS(1+ε)k.

I An algorithm for the decision variant plays the role of Carole.

I With d 8 log n
(1−3r)2 e questions, Paul will find x ∈ [LCSk, LCS(1+ε)k] for

some 1/4 < r < 1/3.

Locality-Sensitive Hashing

Definition: A family F of hash functions is called locality-sensitive, if
for all X,Y ∈ Σn and a hash function h ∈ F chosen u.a.r.:

I If Ham(X,Y) ≤ k, then h(X) = h(Y) with prob. ≥ p1;

I If Ham(X,Y) ≥ (1 + ε)k, then h(X) = h(Y) with prob. ≤ p2.

Main idea (simplified):
We choose a locality-sensitive hash function h ∈ F uniformly at
random, and apply it to all `-length substrings of S1, S2.

We then explore the pairs of strings that collide.

If there is a pair of `-length substrings of X,Y with k mismatches, we
will find it.

Locality-Sensitive Hashing

Definition: A family F of hash functions is called locality-sensitive, if
for all X,Y ∈ Σn and a hash function h ∈ F chosen u.a.r.:

I If Ham(X,Y) ≤ k, then h(X) = h(Y) with prob. ≥ p1;

I If Ham(X,Y) ≥ (1 + ε)k, then h(X) = h(Y) with prob. ≤ p2.

Main idea (simplified):
We choose a locality-sensitive hash function h ∈ F uniformly at
random, and apply it to all `-length substrings of S1, S2.

We then explore the pairs of strings that collide.

If there is a pair of `-length substrings of X,Y with k mismatches, we
will find it.

Locality-Sensitive Hashing

We construct hash functions as in [Indyk and Motwani’98]:

Π = {hi,1 ≤ i ≤ n : hi(a1a2 . . . an) = ai}

F = Πm for some parameter m

How to compute the collisions for h ∈ F? We use Karp–Rabin
fingerprints: h(X) 6= h(Y)⇒ ϕ(h(X)) 6= ϕ(h(Y))⇒ w / prob. 1− 1/nc

The fingerprints can be computed in O(n log n) time via FFT

Choice of parameters:

p1 = 1− k/n, p2 = 1− (1 + ε) · k/n

m = logp2
d1/ne

Locality-Sensitive Hashing

We construct hash functions as in [Indyk and Motwani’98]:

Π = {hi,1 ≤ i ≤ n : hi(a1a2 . . . an) = ai}

F = Πm for some parameter m

How to compute the collisions for h ∈ F? We use Karp–Rabin
fingerprints: h(X) 6= h(Y)⇒ ϕ(h(X)) 6= ϕ(h(Y))⇒ w / prob. 1− 1/nc

The fingerprints can be computed in O(n log n) time via FFT

Choice of parameters:

p1 = 1− k/n, p2 = 1− (1 + ε) · k/n

m = logp2
d1/ne

Locality-Sensitive Hashing

We construct hash functions as in [Indyk and Motwani’98]:

Π = {hi,1 ≤ i ≤ n : hi(a1a2 . . . an) = ai}

F = Πm for some parameter m

How to compute the collisions for h ∈ F? We use Karp–Rabin
fingerprints: h(X) 6= h(Y)⇒ ϕ(h(X)) 6= ϕ(h(Y))⇒ w / prob. 1− 1/nc

The fingerprints can be computed in O(n log n) time via FFT

Choice of parameters:

p1 = 1− k/n, p2 = 1− (1 + ε) · k/n

m = logp2
d1/ne

Algorithm

1: Choose a set H of Θ(n1/(1+ε)) functions from Πm u.a.r.
2: CHl := set of all collisions of l-length substrings of S1,S2 under the

hash functions in H
3: Draw a collision (X,Y) ∈ CH` uniformly at random
4: if Ham(X,Y) ≤ (1 + ε) · k then return YES
5: Choose a subset C′ ⊆ CHl of size min{CH` ,4nL}
6: for (X,Y) ∈ C′ do
7: if Ham(S1,S2) ≤ k then return YES
8: return NO

Running time O(n1+1/(1+ε) log n):

1. Compute the hash values and C′: O(n1+1/(1+ε) log n) time (FFT)

2. Pick a random collision: O(n1+1/(1+ε)) time (reservoir sampling)

3. Test in line 5: O(n1+1/(1+ε) log2 n) time (dimension reduction)

4. Test in line 7: O(n) time (character-by-character)

Algorithm

1: Choose a set H of Θ(n1/(1+ε)) functions from Πm u.a.r.
2: CHl := set of all collisions of l-length substrings of S1,S2 under the

hash functions in H
3: Draw a collision (X,Y) ∈ CH` uniformly at random
4: if Ham(X,Y) ≤ (1 + ε) · k then return YES
5: Choose a subset C′ ⊆ CHl of size min{CH` ,4nL}
6: for (X,Y) ∈ C′ do
7: if Ham(S1,S2) ≤ k then return YES
8: return NO

Running time O(n1+1/(1+ε) log n):

1. Compute the hash values and C′: O(n1+1/(1+ε) log n) time (FFT)

2. Pick a random collision: O(n1+1/(1+ε)) time (reservoir sampling)

3. Test in line 5: O(n1+1/(1+ε) log2 n) time (dimension reduction)

4. Test in line 7: O(n) time (character-by-character)

Experiments

None of the previous solutions have been implemented.

The only algorithm that seemed to be practical enough is the dynamic
programming one [Flouri et al.’15]

We compared our algorithm with the dynamic programming one

I On random strings;

I On strings extracted from E. coli.

Lengths from 5000 to 60000, k = 10,25,50

Experiments

None of the previous solutions have been implemented.

The only algorithm that seemed to be practical enough is the dynamic
programming one [Flouri et al.’15]

We compared our algorithm with the dynamic programming one

I On random strings;

I On strings extracted from E. coli.

Lengths from 5000 to 60000, k = 10,25,50

Running time

(a) Random, k = 25 (b) E. coli, k = 25

I For each length, we performed 10 independent experiments

I Big standard deviation for ε = 1, negligible for ε = 1.5 and ε = 2.0

I Gain up to a factor of 10 on strings of length 60000

Distortion and accuracy
We estimate distortion by computing two values:

rmin(ε, k) = minS1,S2(LCSk̃(S1, S2)/LCSk(S1, S2))
rmax(ε, k) = maxS1,S2(LCSk̃(S1, S2)/LCSk(S1, S2))

Furthermore, we can only err by returning a string shorter than LCSk.

Random
ε = 1.0 ε = 1.5 ε = 2.0

k = 10
0.92 1.50 1.00 1.53 1.13 1.87

err = 7% err = 0% err = 0%

k = 25
1.10 1.48 1.30 1.70 1.55 2.11

err = 0% err = 0% err = 0%

E. coli
ε = 1.0 ε = 1.5 ε = 2.0

k = 10
0.86 1.41 0.91 1.47 0.95 1.71
err = 34% err = 13% err = 8%

k = 25
0.94 1.45 0.96 1.75 0.98 1.96

err = 7% err = 5% err = 2%

Conclusion

I Longest common substring with k mismatches cannot be solved in
subquadratic time unless SETH is false

I New approximation algorithm solves the problem in
O(n1+1/(1+ε) log3 n) time and O(n) space

I Simple and practical — faster than the dynamic programming
solution for ε > 1

I Small distortion compared to LCSk (even though no theoretical
guarantee)

I Good accuracy

Thank you!

