Approximating Longest Common
Substring with k mismatches

Garance Gourdel, Tomasz Kociumaka, Jakub
Radoszewski, Tatiana Starikovskaya

Similarity measures

Given two strings X and Y, how similar are they?

Ideally, we want a similarity measure that is
» Robust: Small change in the input = small change of the measure

» Fast to compute

Applications in Bioinformatics, Information Retrieval.

Edit distance

Smallest number of insertions, deletions, and substitutions required
to convert one string into the other.

EditDistance (GATTACAT, ATTACATT) = 2

Can be computed in quadratic time using dynamic programming. This
is probably optimal:

[Backurs and Indyk’15] The Edit distance can’t be computed in
strongly subquadratic time, unless SETH is false.

SETH (Strong Exponential Time Hypothesis)
Vo > 0, there exists an integer g such that SAT on g-CNF formulas with
m clauses and n variables cannot be solved in time m°(1)2(1-9n,

Longest Common Substring

The maximal length of a string that occurs in both strings.
LCS (TAAGC, AAGAA) =3

Can be computed in O(n) time

Unfortunately, not robust: can change a lot when we change a few
characters of the input.

This work

Longest Common Substring with k mismatches problem
an integer Kk, strings S;, S, of length n
the maximal length of a substring of S; that occurs in S,
with k mismatches

LCSy (TAAGC, AAGAA) = 4fork=1

Closely related to the k-macs (the k-mismatch average common
substring) distance

Longest Common Substring with k mismatches

Exact solutions:
» k=1: O(nlogn) time
» O(n?) time - dyn. prog.
O(n((k + 1)(JLCS| + 1))¥) or O(n?|LCS,|/k) time

>

k1-5p2 /2V “) time, rand.

v

O(n log* n) time

A\

» LCSy > log***n: O(n) time
All solutions use O(n) space.

In general, LCS; cannot be solved in strongly subquadratic time, unless
SETH is false

Longest Common Substring with approx. k mismatches
an integer k, a constant ¢ > 0, strings S1, S, of length n

The length LCS; > LCS, (T, T2) of a substring of S; that
occurs in S, with < (1 +) - k mismatches

S1 = TAAGCTTT, S, = CACGTTTC, k=2, =1.5
LCSk(S1,S2) = 6 = we can return AGCTTT

» More robust than LCS, easier to compute

» O(nl+Y/(1+2) Jog? n) time, O(n'*T1/(1+9)) space for any 0 < & < 2

» Main idea: locality-sensitive hashing

» Very complex system of hash functions, superlinear space

Longest Common Substring with approx. k mismatches
an integer k, a constant ¢ > 0, strings S1, S, of length n

The length LCS; > LCS, (T, T2) of a substring of S; that
occurs in S, with < (1 +) - k mismatches

S1 = TAAGCTTT, S, = CACGTTTC, k=2, =1.5
LCSk(S1,S2) = 6 = we can return AGCTTT

\4

More robust than LCS, easier to compute

O(ni+1/(+e) 10g3 n) time, O(n) space for any ¢ > 0

\4

\{

Main idea: locality-sensitive hashing

v

Practical: Simple system of hash functions, linear space

Reduction to the decision variant

Twenty question game with a liar

[) Isx < A? o

fraction of lies < r

Paul Carole

Given 0 < A, B < n. Carole must answer YES if x < A and NO if x > B.
To win, Paul must return some number in [A, B].

Corollary of : For any r < 1, Paul can win

by asking | (‘13 °3gr';2] questions.

Decision variant

integers k, ¢, a constant ¢ > 0, strings S1, S, of length n

YES if ¢ < LCSy;
YES or NO if LCSy, < £ < LCS(1,.)i;
NO if LCS<1+6)k < /.

The answer must be correct with probability at least 3/4.

Decision variant

integers k, ¢, a constant ¢ > 0, strings S1, S, of length n

YES if ¢ < LCSy;
YES or NO if LCSy, < £ < LCS(1,.)i;
NO if LCS<1+6)k < /.

The answer must be correct with probability at least 3/4.

» A =LCSy and B = LCS(lJrg)k.
» An algorithm for the decision variant plays the role of Carole.

» With “?1_”3?;;2] questions, Paul will find x € [LCSy, LCS ;.| for

some 1/4 <r < 1/3.

Locality-Sensitive Hashing

Definition: A family F of hash functions is called locality-sensitive, if
for all X, Y € X" and a hash function h € F chosen u.a.r.:

» If Ham(X,Y) < k, then h(X) = h(Y) with prob. > p;;
» If Ham(X,Y) > (1 +)k, then h(X) = h(Y) with prob. < p,.

Locality-Sensitive Hashing

Definition: A family F of hash functions is called locality-sensitive, if
for all X, Y € X" and a hash function h € F chosen u.a.r.:

» If Ham(X,Y) < k, then h(X) = h(Y) with prob. > p;;
» If Ham(X,Y) > (1 +)k, then h(X) = h(Y) with prob. < p,.

Main idea (simplified):
We choose a locality-sensitive hash function h € F uniformly at
random, and apply it to all /-length substrings of S, Ss.

We then explore the pairs of strings that collide.

If there is a pair of /-length substrings of X, Y with k mismatches, we
will find it.

Locality-Sensitive Hashing

We construct hash functions as in
M={h,1<i<n:hi(qa;y...a,) =a;}

JF = II" for some parameter m

Locality-Sensitive Hashing

We construct hash functions as in
M={h,1<i<n:hi(qa;y...a,) =a;}
JF = II" for some parameter m

How to compute the collisions for h € 7? We use Karp-Rabin
fingerprints: h(X) # h(Y) = p(h(X)) # ¢(h(Y)) = w / prob. 1 — 1/n°

The fingerprints can be computed in O(nlogn) time via FFT

Locality-Sensitive Hashing

We construct hash functions as in
M={h,1<i<n:hi(qa;y...a,) =a;}
JF = II" for some parameter m

How to compute the collisions for h € 7? We use Karp-Rabin
fingerprints: h(X) # h(Y) = p(h(X)) # ¢(h(Y)) = w / prob. 1 — 1/n°

The fingerprints can be computed in O(nlogn) time via FFT
Choice of parameters:

pr=1—k/npo=1—(1+4¢)-k/n
m = log, [1/n]

Algorithm

»

S A

: Choose a set 7{ of ©(n'/('*<)) functions from II" u.a.r.

C/t := set of all collisions of I-length substrings of S;. S, under the
hash functions in #
Draw a collision (X,Y) € C} uniformly at random
if Hom(X.Y) < (1 +¢) - k then return YES
Choose a subset C' C C/* of size min{C}*, 4nL}
for (X,Y) € C' do
if Ham(Sq, S;) < k then return YES
return NO

Algorithm

1: Choose a set 7 of ©(n'/(1*<)) functions from II" u.a.r.

: G/t := set of all collisions of [-length substrings of Si, S, under the
hash functions in #

: Draw a collision (X, Y) € C}* uniformly at random

: if Ham(X,Y) < (1 + ¢) - k then return YES

: Choose a subset C' C C/* of size min{C}’, 4nL}

: for (X,Y) € C' do

if Ham(Sq, S;) < k then return YES

: return NO

N

Running time O(n'*+/(+) Jogn):
Compute the hash values and C’: O(n'*1/(1+¢) logn) time (FFT)
Pick a random collision: O(n'+1/(1+2)) time (reservoir sampling)
Test in line 5: O(n'T1/(1+¢) Jog? n) time (dimension reduction)

Test in line 7: O(n) time (character-by-character)

Experiments

None of the previous solutions have been implemented.

The only algorithm that seemed to be practical enough is the dynamic
programming one

Experiments

None of the previous solutions have been implemented.

The only algorithm that seemed to be practical enough is the dynamic
programming one

We compared our algorithm with the dynamic programming one
» On random strings;

» On strings extracted from E. coli.

Lengths from 5000 to 60000, k = 10, 25,50

Running time

@
E

10000 20000 30000 40000 50000 60000
Length

10000 20000 30000 40000 50000 60000
Length

Random, k = 25 E. coli, k = 25

» For each length, we performed 10 independent experiments
» Big standard deviation for ¢ = 1, negligible for e = 1.5 and ¢ = 2.0

» Gain up to a factor of 10 on strings of length 60000

Distortion and accuracy

We estimate distortion by computing two values:

T‘min(E,k) = II'liI'lSl’S2 (LCSI'((Sl,Sz)/LCSk(Sl,Sz))
rmax(e, k) = maxs, s, (LCSE(Sl,Sz)/LCSk(ShSz))

Furthermore, we can only err by returning a string shorter than LCSy.

Random
e=1.0 e=15 =20
% —10 | 092150 [1.00[1.53] 113 [1.87
=7% = 0% = 0%
ko5 | 110 [1.48 [1.30[1.70 | 1.55 [2.11
= 0% = 0% = 0%
E. coli
e=1.0 e=1.5 e=20
k—10 | 086 [1.41 [091 [1.47 [0.95 [1.71
=34% =13% = 8%
j—os | 094]1.45 [096 1.75 | 0.98 [1.96
=7% = 5% = 2%

Conclusion

» Longest common substring with k mismatches cannot be solved in
subquadratic time unless SETH is false

» New approximation algorithm solves the problem in
O(n'1/049) Jog® n) time and O(n) space

» Simple and practical — faster than the dynamic programming
solution for ¢ > 1

» Small distortion compared to LCSy (even though no theoretical
guarantee)

» Good accuracy

Thank you!

