
Fast lightweight accurate xenograft sorting
(Faster xenograft sorting with 3-way bucketed Cuckoo hashing of k-mers)

Sven Rahmann & Jens Zentgraf
Genome Informatics, Institute of Human Genetics
University of Duisburg-Essen, Essen, Germany

DSB 2020, Rennes, 04.02.2020

Patient-derived xenografts (PDXs)

Source: Creative AniModel,
https://www.creative-animodel.com/Featured-Service/Human-Tumor-Xenograft-Model.html

■ tumor cell lines
or patient tumor samples
implanted in mice

■ study tumor heterogeneity,
evolution

■ sequencing of samples
■ mixture of human+mouse DNA
■ First task: separate/sort reads

("xenograft sorting"), or:
extract graft (human) reads

https://www.creative-animodel.com/Featured-Service/Human-Tumor-Xenograft-Model.html

Source: https://public.ornl.gov/site/gallery/originals/
Mouse_and_Human_Genetic_Similarities_-_original.jpg

https://public.ornl.gov/site/gallery/originals/Mouse_and_Human_Genetic_Similarities_-_original.jpg
https://public.ornl.gov/site/gallery/originals/Mouse_and_Human_Genetic_Similarities_-_original.jpg

Problem: Human-Aligned Mouse Alleles (HAMAs)
■ mouse reads may align to human genome
■ may lead to false human (tumor) variant calls
■ oncogenes particularly prone to this effect

S. Y. Jo, E. Kim, and S. Kim. Impact
of mouse contamination in genomic
profiling of patient-derived models
and best practice for robust
analysis. Genome Biology,
20(1):Article 231, Nov 2019.

Genome-scale xenograft sorting
Classical approach

0. Clean reads, filter duplicates, ...

1. Map reads to reference genomes
(read mappers: bwa-mem, bowtie2;
based on "FM-index").

2. Sort aligned reads (BAM files) by
chromosome and position.

3. Scan BAM files to find better match
(species of origin) for each read

Alignment-free ("k-mer") approach

[0. Clean reads, filter duplicates, …]

1. Partition reads into k-mers,
look up species information for each
k-mer, aggregate information per
read to classify read.

2. Perhaps: Use classical approach
for difficult (ambiguous) reads.

compute-intensive, slow lightweight, fast

k-mer methods for xenograft sorting
■ Partition each read into its k-mers

■ Look up information on each k-mer in a table
[k-mer ↦ human | mouse | both]

■ Absent k-mers occur in neither species.

■ Aggregate k-mer information into a statement
about the read [e.g., majority vote]

Goals: Be both fast and small
Time bottleneck
random memory lookup
(~400 times slower than arithmetic ops)

Therefore:
Try to achieve a single lookup,
avoid indirection !

Space bottleneck
Bits for k-mers (50 for 25-mers)

(3,4) Cuckoo hashing
■ We use 3 hash functions.
■ Each maps a key (k-mer) to a bucket.
■ Each bucket can store up to 4 elements.
■ Idea: bucket fits within a cache line

■ 12 possible locations for each element.
■ At worst 3 memory lookups

with cache misses.

Insertion by random walk
■ Insert: try three buckets in order.
■ Insert into first bucket with space available.
■ If all full, evict a random element,

place current element into now free slot.
■ Re-insert evicted element

into different slot.
■ May cause another eviction…
■ Random walk through table.
■ Limit length of walk (e.g. 500 steps).

Fail if limit reached.

Why (h,b) = (3,4) ?
More hash functions (h), larger buckets (b) have ⊕ and ⊖ effects:

⊕ higher load limit
[only 50% for standard (2,1)]
[over 99.9% for (3,4),
less w/ random walk]

⊖ more worst case cache misses (h)

⊖ more search effort per bucket (b)

■ (3,4) is a good compromise
(maybe also (2,8)).

S. Walzer. Load thresholds for cuckoo
hashing with overlapping blocks.
ICALP 2018, LIPIcs 107:102.

Speed vs. space: High vs. very high loads
So (h,b) = (3,4) allows loads up to 99.9%, but should we use it?

Leaving slots empty gives better
choice distribution: more elements
at their first hash bucket choice,
lower average cost (cache misses).

Can be optimized exactly
(Jens Zentgraf's talk; ALENEX 2020).

Random walk degrades near 100%.
We use 88%, random walk performs fine.

Weak k-mers
Host or graft k-mers with a close neighbor (Hamming distance 1)
in the other species are not as reliable ("weak"):
A single nucleotide variation suffices to switch species.

After building the hash table, we mark weak k-mers.

Value set of size 5: host, weak host, graft, weak graft, both.
Each k-mer in the table has exactly one of these values.

[Xenome: similar concept with 4 values: host, graft, both, "marginal"]

Marking weak k-mers
Naive (and slow) method:
For each k-mer, query all 3k neighbors, adjust values accordingly.

Our method:
Create sorted list of k-mers and their reverse complements.
[Processed in 16 chunks according to first two letters].

Marking weak k-mers
k-mer: ℓ-prefix (P), 1 middle base (M), ℓ-suffix (S): 25 = 12 + 1 + 12.
Consider each block with common first 12 + 1 = 13 letters (P + M).

Compare all pairs of suffixes in such a block.
We catch all canonical k-mers with HD 1 unless they differ in the middle base.

PPPPPPPPPPPP|M|SSSSSSSSSSSS
...
SSSSSSSSSSSS|M|PPPPPPPPPPPP

For those, re-code k-mers in each block and re-sort block:

PPPPPPPPPPPP|SSSSSSSSSSSS|M

Space considerations
Keys: 25-mers (50 bits, 49 because canonical, but hard to encode)
Values: species (5 classes: host, graft, weak host, weak graft, both; 3 bits)

Store human and mouse
reference, alternative alleles,
cDNA transcripts:
~ 4.5 billion k-mers * 53 bits
at load 0.88:
33.88 GB for hash table 😩

Saving Space with Quotienting
Keys are encoded canonical k-mers (half of set [4k] := {0, .., 4k-1}).

Step 1: Bijective randomizing function [4k] ➝ [4k] with a odd

Step 2: Map to buckets (simply mod p: number of buckets). Define

 f(x) := ga,b(x) mod p and q(x) := ga,b(x) // p .
Then x can be uniquely reconstructed
from f(x) ("hash value, "bucket number") and q(x) ("fingerprint", "quotient").
Sufficient to store q(x) in bucket f(x) (and which hash function was chosen).

Saving Space with Quotienting
Keys: 4.5 billion 25-mers (50 bits) at load 0.88 in 1 278 409 091 buckets (size 4)
Quotients: 19.75 ➝ 20 bits
Hash choices: 4 (empty, 1, 2, 3): 2 bits
Values: 5 classes (host, graft, weak host, weak graft, both): 3 bits

~ 4.5 billion key value pairs * 25 bits / load 0.88:
15.98 GB for the hash table 😃

Values and/or choices could be further compressed,
saving a little more space (at the expense of CPU time).

Properties of the k-mer-species stores

Properties of the k-mer-species stores

xengsort: 1 thread for build, 8 for mark
xenome: 8 (9) threads for build and mark
XenofilteR: 8 threads (bwa index)

Read classification using (h, h', g, g', b, x; n)
■ Partition read into its valid k-mers (no Ns)

(number: n)

■ Look up class of each k-mer and count:
■ h, h': k-mers in read belonging to "host", "weak host"
■ g, g': k-mers in read belonging to "graft", "weak graft"
■ b: k-mers in read belonging to both species
■ x: k-mers in read belonging to neither species

Read classification using (h, h', g, g', b, x; n)

Quick mode
(inspired by a similar shortcut in kallisto)

■ Examine 3rd and 3rd-last k-mer in read and look up classes.
■ If classes agree, classify read accordingly.
■ Otherwise, count all k-mers and use decision rule tree.

Results: Mouse exome, captured with human kit
Sequences from Kim et
al.: "Impact of mouse
contamination in
genomic profiling of
patient-derived models
and best practice for
robust analysis."
Genome Biology,
20(1):231 (Nov 2019).

■ xengsort: ⅙ of CPU work, ⅓ of the time of xenome.
■ XenofilteR only compares already aligned sequences, same CPU work
■ xenome often reports "ambiguous" when xengsort does not.

Human
GIAB human matepair
dataset (Ashkenazim trio;
1258 million read pairs).

Almost all graft (correct).

Quick mode gives almost
identical results.

Xenome sometimes
bails out ("ambiguous").

Chicken
A sequenced
chicken genome.

XenofilteR only extracts
graft (human) reads,
remainder not classified.
Finds none (correct).

xengsort: Almost all neither
(correct).

xenome: 10% host, graft,
and both (not ideal).

Human
Human lymphocytic
leukemia RNA-seq
(single-end).

XenofilteR finds less
human reads than
both k-mer based tools
(only ~50 %; remainder?)

Still, ~30% "neither" ?
Technical library issues?

Summary: Fast lightweight xenograft sorting
■ Xenograft sorting is necessary to avoid false variant calls.
■ Alignment-free approach using 25-mers and decision rules works well,

lightweight on CPU resources, using 3-way bucketed Cuckoo hashing
■ Our implementation xengsort outperforms xenome;

⅙ of the CPU work, ⅓ wall clock time (both 8 threads)
■ Same time just to scan the BAM files (XenofilteR)
■ Quick mode on very large human data sets reduces time by ⅓,

giving almost same results (needs further testing).
■ 25-mer table fits in 16 GB RAM, could be made smaller

(higher load, compacted values and choice indicators).

Our Data Structure in Bioinformatics 2020
■ Hash table
■ 3-way bucketed Cuckoo hashing

(with bucket size 4)
■ Keys reduced using quotienting

(part of key stored in bucket number)
■ Interesting trade offs:

Small buckets = small quotients,
but lower load possible,
and fewer keys at first hash choice.

■ Several further engineering opportunities

